
Example: QPSK Transmitter System

Based on the previously described modules an QPSK transmitter- Receiver system is
built up (see
Figure 1) in this Section.

Testdata

Generator

Transmitter

(QPSK)
Channel

Receiver

(QPSK)

Figure 1 Top level block diagram of the QPSK Transmitter and Receiver

Figure 1 shows the Functional block diagram of QPSK Transmitter and Receiver system.
First, test data is generated by a test generator and passed to the transmitter. The
rand_bool module is used test data generator and a serial of universal distributed
random bits are is generated. The transmitter takes these binary signals and modulates
those bits to a high frequency QPSK signal (using Quadrature Phase Shift Keying
modulation). The qpsk (QPSK Modulator) module as described in previous Section
is used to model the transmitter. The generated signal is then passed via a channel
(modelled using the air module) which attenuates its input signal and adds noise.
After that the signal is taken by a receiver and translated back into a stream of binary
bits.

In order to model communication systems using the modules in the library the user has
to include the respective header data and set the right namespace first:

Then the expected modules from the library have to be instantiated in the following way:

Where “rand_bool” is the module name, “binary_source” is the instance name of the
module, “stimuli” and “rate” is the output data rate of the module.

Finally, SystemC AMS TDF signals have to be declared to connect different modules:

rand_bool binary_source ("stimuli", rate);

#include "directory of the library/lib_v_01_11/TUV-AMS-LIBRARY.h"
using namespace TUV_ams_lib::bb;

Here a signal called “binary_data_tx” is declared and connected to the “out” port of the
module “binary_source”.

Apart from the above mentioned issues the user has to set the time resolution of the
simulation using the predefined method “sc_set_time_resolution()”. It is also required
to set the sampling rate on at least one port of the modelled system with the method
“.set_T()”.

Following Section of code describe the System, mentioned above.

sca_tdf::sca_signal<bool> binary_data_tx;
 binary_source.out (binary_data_tx);

int sc_main(int argc, char* argv[])
{
 sc_set_time_resolution(1, SC_PS);

 /********** defining signals and parameters *********** */

 sca_tdf::sca_signal<bool> binary_data_tx;
 sca_tdf::sca_signal<double> modulated_data_tx;
 sca_tdf::sca_signal<double> modulated_data_noisy_tx;
 sca_tdf::sca_signal<bool> binary_data_rx;

 double freq;
 int rate;

 /********** setting parameters for simulation *********** */

 cout <<"\n" << "frequency= "; cin >> freq;
 cout <<"\n";

 cout << "sample rate ="; cin >> rate;
 cout <<"\n";

 /********** instantiating SDF-modules**********/

 rand_bool binary_source("stimuli",rate);
 binary_source.out(binary_data_tx);
 binary_source.out.set_timestep(0.1,SC_MS);

 qpsk qpsk_tr("qpsk_tr",freq, rate);
 qpsk_tr.in(binary_data_tx);
 qpsk_tr.out(modulated_data_tx);

 air channel("air",0.4,"gauss_white",1,0,rate);
 channel.in(modulated_data_tx);
 channel.out(modulated_data_noisy_tx);

(This is not the complete source code)

The transmitter and receiver modules consist again of sub modules, which are
contained in the library. Figure 2 and Figure 3 present the internal structure of the
transmitter module and receiver module, respectively.

The transmitter takes a serial stream of binary digits. By inverse multiplexing, these are
first de-multiplexed into N parallel streams, and each one mapped to a symbol stream
using QPSK modulation.

 qpsk_de qpsk_rx("qpsk_rx",freq,rate);
 qpsk_rx.in(modulated_data_noisy_tx);
 qpsk_rx.out(binary_data_rx);

 drain drn("drn");
 drn.in(binary_data_rx);

 /********* tracing of signals ****************************/
 sca_util::sca_trace_file* atf = sca_util::sca_create_vcd_trace_file("tr");

 sca_util::sca_trace(atf, binary_data_tx ,"binary_data_tx");
 sca_util::sca_trace(atf, modulated_data_tx ,"modulated_data_tx");
 sca_util::sca_trace(atf, modulated_data_noisy_tx ,"modulated_data_noisy_tx");
 sca_util::sca_trace(atf, binary_data_rx,"binary_data_rx");

 sc_start(20, SC_MS);

 sca_util::sca_close_vcd_trace_file(atf);

 return 0;
}

http://en.wikipedia.org/wiki/Inverse_multiplexing

d_flip_flop

o2t nrz

o2t nrz

S2P

Q_Mixer_tr

(1.0)

Figure 2 Block diagram of QPSK transmitter

The receiver picks up the signal from antenna, which is then quadrature-mixed down to
baseband using cosine and sine waves at the carrier frequency. This also creates signals
centered on 2fc, so low-pass filters are used to reject these. The baseband signals are
then sampled. This returns N parallel streams, each of which is converted to a binary
stream using an appropriate symbol detector. These streams are then re-combined into
a serial stream, which is an estimate of the original binary stream at the transmitter.

t2o

t2o

compare

P2S
Q_Mixer_re

lp

lp

downsaple

downsaple

compare

D_Flip_Flop

D_Flip_Flop

Figure 3 Block diagram of OFDM Receiver

The next code Section shows how to use building block modules to build the QPSK
transmitter module:

http://en.wikipedia.org/wiki/Detection

 /************************** QPSK modulator*******************************/

SC_MODULE(qpsk) {

 sca_tdf::sca_in<bool> in;
 sca_tdf::sca_out<double> out;

/***********signal for connecting sub module*********************/

 private:

sca_tdf::sca_signal<bool> sig_dcode;
sca_tdf::sca_signal<bool> sig_i;
sca_tdf::sca_signal<bool> sig_q;
sca_tdf::sca_signal<double> sig_n_i;
sca_tdf::sca_signal<double> sig_n_q;

/****************declare sub module******************/
s2p<bool,2>* s2p_sub;
nrz* nrz_i_sub;

 nrz* nrz_q_sub;
 q_mixer_tr* mixer_sub;

 public:
 qpsk(sc_core::sc_module_name n, double _freq, int rate);
};

/****************************** r*******************************/
qpsk::qpsk(sc_core::sc_module_name n, double _freq, int rate)
 {
 s2p_sub = new s2p<bool,2>("i_s2p",1);
 s2p_sub->in(in);
 s2p_sub->out[0](sig_i);
 s2p_sub->out[1](sig_q);

 nrz_i_sub = new nrz("i_sub",1.0);
 nrz_i_sub->in(sig_i);
 nrz_i_sub->out(sig_n_i);

 nrz_q_sub = new nrz("q_sub",1.0);
 nrz_q_sub->in(sig_q);
 nrz_q_sub->out(sig_n_q);

 mixer_sub = new q_mixer_tr("i_mix",_freq,1.0,rate,false);
 mixer_sub -> i_in(sig_n_i);
 mixer_sub -> q_in(sig_n_q);
 mixer_sub -> out(out);
 }

As we can see from the source code the modelling of an QPSK transmitter is quite easy
when using the existing modules in the library.

Simulation example:
In this Section several simulation results are presented with different settings of the
following parameters:

 freq, defines carrier frequency

 timestep (Baud Rate) , defines the Baud rate of Binary source

 atten, attenuation of channel

1. with Gaussian noise ,with attenuation in channel:
freq = 10 K Hz, Baud Rate= I K, atten= 0.7

2. Above simulation with zoom in

3. with Gaussian noise ,with attenuation in channel:

freq = 10 K Hz, Baud Rate= 2 K, atten= 0.7

4. Above simulation with zoom in

5. with Gaussian noise ,with attenuation in channel:
freq = 1 M Hz, Baud Rate= 2 K, atten= 0.7

6. Above simulation with zoom in

7. with Gaussian noise ,with attenuation in channel:
freq = 1 M Hz, Baud Rate= 10 K, atten= 0.7

8. Above simulation with zoom in

9. with Gaussian noise ,with attenuation in channel:
freq = 1 M Hz, Baud Rate= 10 K, atten= 0.5

10. with Gaussian noise ,with attenuation in channel:
11. freq = 1 M Hz, Baud Rate= 10 K, atten= 0.47

