

Interfacing cycle-accurate TLM Models and AMS SDF Clusters in SystemC A Case Study

Andreas Herrholz OFFIS Oldenburg, Germany

> SystemC AMS/TLM Interaction Workshop Vienna 2008-01-31

Motivation: ASK Transceiver

- Case study used in ANDRES project to demonstrate issues and problems in heterogeneous system design
- Has been modeled using SystemC, SystemC-AMS and OSSS
- Combines SDF-models with cycle-accurate TLM-Models

Motivation

- The ANDRES Project and OSSS
- Case study scenarios
- Issues and Problems
- Outlook
- Summary

SystemC AMS/TLM Interaction Workshop Vienna 2008-01-31

The ANDRES Project

- FP6 STREP (http://andres.offis.de)
- Goals
 - SystemC based framework for modelling, analysis and synthesis of adaptive heterogeneous embedded systems
 - Modelling of software, analog hardware and reconfigurable digital hardware components
 - Developing tools for automatic synthesis of reconfigurable digital hardware
- Integrates three SystemC based modelling libraries: OSSS(+R), SystemC-AMS and HetSC

OSSS (Oldenburg System Synthesis Subset)

- Extends synthesisable subset of SystemC 2.2.0 (IEEE 1666)
- Object-oriented modelling of synthesisable HW/SW-Systems
 - Cycle-accurate models using implicit FSMs (SystemC CThreads)
 - Concurrent access to shared resources is modelled via specialized slave modules (SharedObject, ReconObject)
 - Communication between modules is modelled using method calls
 - Logical connections between modules can be refined to busses and point-topoint-connections

OSSS is TLM

- Communication is modelled via blocking bidirectional method-calls
- Method-interfaces can be user-defined
- Modules are synthesisable cycle-accurate TLM-models
- Method-calls can be mapped to lower-level bus transactions via synthesisable transactors
- \rightarrow OSSS enables synthesisable (cycle-accurate) TLM

OSSS is not OSCI TLM, but

- Method-Interface can be restricted to OSCI TLM compatible methods (blocking put(), get() and transport)
- Every user-defined method can be mapped to OSCI TLM (using a remote method invocation (RMI) protocol)

Two Use Cases

- Original use case can be divided into two separate cases
 - Interfacing a TLM master (encryption module) with SDF-cluster (Sender)

1st Case : TLM Master & SDF cluster

- SDF cluster becomes TLM slave
- Every frame encrypted by the *Encryptor* should be transmitted by the Sender
 - \rightarrow every frame needs to be converted to an input token
- TLM model of the encryptor does not have a constant output rate!
 - \rightarrow Models need to be decoupled \rightarrow use a FIFO
 - \rightarrow if output rate of encryptor is slower than input of sender (FIFO runs empty), define a default value or throw an exception
- All of this can be done using standard SystemC and SystemC-AMS features

2nd case: TLM Slave and SDF cluster

 More complicated than first case, as SDF-cluster cannot become TLM master

 \rightarrow Need to insert TLM master, converting tokens to transactions

 Receiver's output frames have to be sampled by separate process and written into FIFO

 \rightarrow Sample period needs to be the same as the SDF output period!

- Alternative: make process sensitive to sdf2de (need sc_buffer semantics)
- TLM master gets data from FIFO and calls interface method of slave

Issues and Problems

- Approach requires much knowledge of the system and its internal functions and timing behaviour
 - e.g. types and sizes of FIFOs (bounded or unbounded), sampling rates, periods, define how to handle exceptions
- Manually coded approach
 - \rightarrow can generate a lot of coding overhead
 - → may tend to be very error-prone
- Creates additional modules, process and context switches
 may slow down simulation speed
- Does only work for cycle-accurate TLM

SystemC AMS/TLM Interaction Workshop Vienna 2008-01-31

- Timing relation between SDF and cycle-accurate TLM is not a big issue
- Both have defined constant period
 - Cycle-accurate TLM has a fixed duration of a cycle (clock period)
 - SDF has fixed period T for duration between two firings
- \rightarrow Timing relation between both is also fixed
- → However, this does not solve the issue of non-constant output rates of TLM
- There are of course bigger issues for approximately and loosely timed TLM (see OSCI TLM 2.0)
- Not yet in the scope of ANDRES, but will become topic if OSSS is extended to non strictly timed/clocked models

- ANDRES project develops Converter Channels to ease connection of different Models of Computation
- Converter Channels could be extended to support interfacing of SDF and TLM
 - Needs to be flexible to cope with different TLM timing styles
 - Must be configurable to adapt to different application cases (types of FIFOs, exception handling, sampling rates, ...)
 - Should support at least OSCI TLM 1.0 Core interface
 - Should be easy to use (reduce coding errors)
- Alternative: Provide general patterns for connecting TLM and AMS models (more flexible, but usually much harder to use)

- ANDRES project develops solutions to cope with problems and issues in heterogeneous system design (including AMS and TLM)
- TLM models and SDF-cluster can be connected using standard SystemC and SystemC-AMS features, but it is not very easy to use, may be error-prone and requires much application knowledge
- Timing relations can become greater issue for non-strictly timed TLM models
- Need for facilities to ease interfacing of AMS and TLM → Converter Channels

