
HEAVEN: A Framework for the

Refinement of Heterogeneous Systems∗

Rüdiger Schroll, Christoph Grimm, Klaus Waldschmidt

Abstract

A key issue in system design is the evaluation of different architectures. For this task, design-
ers create models of these architectures. In industrial practice, designers create such models by
modifying and combining existing models. This leads to systems that combine different models
of computation and different kinds of signals at different levels of abstraction. Especially in
signal processing systems, very different kinds of signals are combined.

Without further actions, such as the programming of converters or adapters, the resulting
models are inconsistent and cannot be simulated directly. In the following, we discuss the use
of polymorphism for automatically converting inconsistent models into consistent ones. We
introduce polymorphic signals, and give an overview of a prototypical implementation HEAVEN
with an example that demonstrates the use of polymorphic signals.

1 Introduction

A key issue of system design is the analysis of different architectures. Especially for signal processing
systems, the ‘design space’ is often huge. Design issues such as partitioning (analog, digital ASIC,
DSP+Software), determination of sample frequencies, bit widths, or precision of analog components
determine quality, performance and costs of the system. In order to analyze and to verify the
behavior of different architectures, a model of each architecture is created and simulated.

Modeling languages such as VHDL-AMS allow designers the modeling and simulation of mixed-
signal systems at different levels of abstraction. However, for modeling an architecture with another
partitioning, or with different sample rates, significant modifications of the models are required.
Most notably, these modifications are due to the fact that VHDL(-AMS) requires a concrete speci-
fication of how communication and synchronization are implemented. Therefore, at the interfaces,
modeling often requires nearly the same effort as a full design.

In model based design, designers use different platforms with pre-defined schemes for communica-
tion and synchronization (models of computation, MoC). Different MoCs can be chosen, depending
on the architecture to be modeled: Analog circuits can be modeled by equations, DSP methods
for example by static dataflow with constant time steps. Because the MoC specifies the behavior
of communication, there is no need for the designer to model communication in an explicit way.
Therefore, model based design allows designers evaluation of different architectures in an earlier
stage of the design process. Particular research on the use of different MoCs and model based
design has been done within the design framework Ptolemy [1].

The aim of model refinement is a stepwise, successive design and verification process, where each
design issue can be evaluated immediately. This means, that simulation of ‘incomplete’ designs

∗This work has (in part) been supported within the BMBF/edacentrum project ‘SAMS’.

1



should be possible, and that the effort for changing a model must be small. Compared with model
based design, this permits an earlier evaluation of system properties, can increase re-usability of
models, and provides a direct link between a design issue and its problems.

In order to demonstrate new methods for model refinement, we use the (prototypical) design
framework HEAVEN (HEterogeneous Systems Refinement, Analysis and Verification ENviron-
ment) shown by figure 1. HEAVEN supports the refinement of signal processing systems to dif-
ferent architectures using SystemC-AMS[2]. We consider two kinds of refinement: The refinement
of computation introduces properties such as sample frequencies, bit widths, precision, etc. by
choosing a model of computation and signal types. In the refinement of interfaces, the behavior
implicitly introduced by choosing a model of computation is made explicit by defining a physical
implementation thereof, e.g. using clock and enable signals.

Executable
Specification

Modeling of

ideal, intended
behavior

computation-
accurate

model

behavior of
realization

interface-
accurate

model

Refinement of
computation

Refinement of
interfaces

Explicit,
via pins
(clk, enable)

Communication
Synchronisation

Implicit
by MoC

Implicit
by MoC

Adaptors to
pin-precise

models

Models
of physical

effects

Circuit Design

HEAVEN HELL

Implementation
of MoC

Behavioral
modeling

Re-use of models,
inheritance

Changing
Requirements

Figure 1: Refinement of signal processing applications to mixed-signal circuits with
HEAVEN/HELL.

The result of the model refinement is a fully specified architecture. The design of signal pro-
cessing systems without considering physical effects and non-ideal behavior from analog or digital
implementations is not realistic. Therefore, HEAVEN is supported by HELL (HEterogeneous Sys-
tems modeling Library; figure 1 right). HELL provides behavioral models of physical effects that
can be added to the ‘ideal’ behavior assumed in HEAVEN.

In this paper, we give an overview of HEAVEN’s features that support model refinement. Most
notably, model refinement is supported by polymorphic signals for signal processing systems, and
by adapter classes that implement a model of computation by ‘pin-precise’ models. Polymorphic
signals implicitly convert signal types that connect MoCs used in the design of signal processing
systems. Therefore, polymorphic signals allow designers to compose models in an intuitive and
interactive way, just by connecting existing blocks.

Related work The use of polymorphism for modeling heterogeneous systems is not new. Ba-
sic ideas for polymorphic models and signals in HEAVEN are also properties of hybrid data-flow
graphs [3, 4], where signal types are converted implicitly, and the semantics of nodes is defined by
firing rules. An implicit conversion of different signal types is also provided by Matlab/Simulink.

2



However, Matlab/Simulink is restricted to block diagrams with discrete or continuous signals, and
does not support modeling of analog or digital circuits or software.

SystemC 2.0 introduces a very generic approach, where signals are accessed via interfaces which
can be realized in different ways. This allows one to introduce different models of computation
by using different implementations of the interface [5]. However, the type checking between the
interfaces is very strict, and in order to combine different models of computation, one has to use
converter modules, for example.

In Ptolemy II/Chess [1, 6], behavioral types provide basically the same functionality as the signal
interfaces in SystemC 2.0. In extension to SystemC 2.0, interface automata permit the coupling of
different models of computation provided there is a subtype relation between them[6]. Note that
the subtype relation applies to the value types, and to the protocols that implement a model of
computation (‘behavioral types’). Unfortunately, a subtype relation often does not exist, or can
even be misleading because semantic is not considered.

In [7], we introduce polymorphic signals for signal processing systems. Polymorphic signals pro-
vide methods that translate communication in different MoCs and at different levels of abstraction.
However, the implementation described in [7] is restricted to discrete event (DE) and static dataflow
(SDF) MoCs. In the following we introduce application specific semantic types and a polymorphic
signal class, that cover the MoCs used in signal processing applications at different levels of ab-
straction. Compared to Ptolemy, polymorphic signals are application specific, and are not a generic
modeling property. The restriction to a domain of applications such as signal processing applica-
tions has the advantage, that we can assume that all (polymorphic) signals are approximations of
an ‘ideal’, continuous-time signal. This gives all conversions an intuitive understanding.

Section 2 gives a rough overview of SystemC-AMS, describes the refinement methodology, and
introduces general requirements of polymorphic signals for the refinement of signal processing sys-
tems. Section 3 describes a polymorphic signal class for the modeling of signal processing systems.
Section 4 describes the application of polymorphic signals in a case study.

2 Refinement with HEAVEN

HEAVEN is built on top of SystemC and SystemC-AMS [8, 2]. SystemC-AMS, resp. an early
prototype, the ASC-Library [7], permits the modeling and simulation of signal processing systems.
In the following we first give a brief description of SystemC-AMS. Then, we describe the refinement
of signal processing applications to different mixed-signal architectures, and motivate polymorphic
signals which support such a refinement.

2.1 SystemC-AMS

Layered approach In SystemC 2.0 systems are specified by a structure of modules. The modules
are connected by directed signals. Modules access signals via an interface, which is accessed via
ports. SystemC-AMS provides means for the modeling of signal processing systems in SystemC.
SystemC-AMS extensions are structured in three layers[8]:

The view layer allows the designer the specification of behavior in different models of computation
such as transfer functions, netlists, or a cluster of signal processing functions in the static dataflow
MoC.

The solver (simulator) layer provides means which execute a specification given at the view
layer, e.g. a coordinator which implements the static dataflow MoC, or which solves linear and

3



non-linear differential equations.
The synchronization layer couples different solvers (simulators). For coupling different simu-

lators, the static/synchronous data-flow (SDF) model of computation is used. Note, that both
synchronization layer and solver layer introduce an underlying model of computation, but with
different aims and requirements: The synchronization layer couples simulators which might also be
external simulators such as SPICE. The solver (simulator) layer provides different means for the
modeling and simulation of signal processing systems in SystemC.

Coordinator-Interface Instances at the view layer have a unique interface (coordinator-interface).
This interface allows the coordinator to control the execution of these objects, as well as their com-
munication and synchronization.

Figure 2 gives an overview of a SystemC-AMS model which consists of discrete-event processes
(left), and a cluster in SDF model of computation (modules 1-3, right). Before simulation starts,
the SDF coordinator schedules the blocks of the SDF cluster. During simulation, the SDF coordi-
nator executes the modules for each time step. In order to control execution of each module, the
coordinator has access to all modules via the coordinator interface. Different simulators (here: SDF
coordinator, and SystemC 2.0) are coupled via static data-flow MoC at the synchronization layer.

Static data-flow (SDF) cluster

Module 3

Module 2Module 1
discrete-

event
processes

of
SystemC

coordinator - static data-flow with constant step width

Port

Signal

coordinator
interface

Synchronization:

Figure 2: A model in SystemC-AMS.

2.2 Refinement of Computation in Signal Processing Systems

Executable specification The design of signal processing systems begins with a block diagram
which describes basic principles of the system. Sample frequencies, range of values, and bit widths
are not yet known. For the first simulations, designers use the MoC ‘continuous-time (CT) signal
flow’. This model of computation assumes that all connections between modules have the semantics
of mathematical equations, and that there is no order of execution or width of time steps that comes
with this model of computation. Furthermore, signals have no limitation, and no quantization.
Table 1 gives an overview of the modeling properties used in the executable specification.

Note, that for simulation of the CT signal-flow model of computation, a discrete algorithm is
required. This algorithm solves the mathematical equations, and determines the width of time
steps. The time steps introduce an error. This error can be reduced by reducing the time steps,
depending on the estimated error. Then, all blocks are simulated in the signal flow’s direction.
Cyclic dependencies can be broken by insertion of a delay. This is basically the static dataflow
MoC, where the execution of the blocks is controlled by the estimated error.

4



Executable specification

Signal value type No limitation
No quantization

sampling No sampling

MoC Continuous-time signal flow

Table 1: Executable specification: model of computation and signals.

Computation-accurate model One aspect of system design is the evaluation of deviations intro-
duced by different realizations. For signal processing systems, there are realizations with fundamen-
tally different behavior: digital signal processing using a DSP or an ASIC, and analog realization.
We can easily model the behavior of these implementations by replacing the MoC and/or the signal
types of the executable specification by more appropriate ones, which implicitly include properties
of a realization.

Properties of digital signal processing systems that have to be evaluated are sampling frequencies
fs, quantization steps Q, and range of values (limitation). A useful MoC for modeling digital signal
processing is static dataflow with constant time steps 1/fs. Appropriate signal values are integers
that model Q and the realization’s range of values.

Properties of analog circuits that are modeled are limitation, limited band width and precision.
Table 1 gives an overview of the modeling properties used in a computation accurate model.

DSP behavior

Signal type value type Limitation [lb, ub]
Quantization Q

time steps ts

MoC Static dataflow with constant time steps ts

Analog behavior

Signal type value type Limitation [lb, ub]
Precision S/N

(time steps) min. time step ts,min

MoC Continuous-time signal-flow (simulated by static dataflow with adaptive time steps)

Table 2: Analog and DSP behavioral model: models of computations and signal types

The refinement of computation successively replaces modules of the executable specification
by modules that model the implementation. The modules that model the implementation use a
maybe different model of computation and a different signal type in order to model properties of
the implementation. This especially affects the interaction with other blocks via ports, and may
introduce incompatibilities or inconsistencies. Potential changes affect

Value types: Range and quantization/precision are restricted, e.g. from general ‘real’ to an
‘integer’ representation with limitation.

Interfaces: Changing the model of computation requires use of other interfaces and different
protocols for the transport of data.

Semantics: Data is not only transported, but also might have different meanings, e.g. a sequence
of bank account numbers, or an approximation of an continuous-time signal, or even nodes
with Kirchhoff laws.

Because of these changes, the intuitive composition of a new model by just replacing a module by
a more detailed one will not work: In most cases the resulting models are inconsistent, and require

5



further actions to convert signal types, protocols, and semantics. Figure 3 gives an example for
such inconsistencies due to refinements: The left two blocks have been replaced by models of a DSP
implementation, and the right block models the continuous-time environment. Furthermore, the
value type ‘real’ has been replaced by 8-bit numbers modeling the range of values from 0 to 255
(Q = 1) with limitation. Note, that the semantics of the signals remains unchanged: the signals are
approximations of a continuous-time and continuous-value signal.

CT signal flowSDF

Module 3
(SDF)

Module 1
(SDF)

SDF coordinator, const ts

Module 2
(CT)

CT signal flow
coordinator

8 bit, ts

12 bit, ts

8 bit, ts

Real Real

!

!

Figure 3: Computation-accurate model with inconsistencies due to refinement steps.

Polymorphic signals Of course, designers can manually write converters that adapt value types,
interfaces and consider changing semantics. In a limited range, this can be done automatically
considering that range of values (and interfaces) are compatible with subtypes. Behavioral types
in Ptolemy II convert protocols by construction of a common automata, but without considering
the meaning of signals. This extends compatibility, but does not consider semantics of the data
transported via a signal. Semantic issues can only be treated in an implicit or automatic way, if we
know the semantics. In order to allow us to convert signals in a more general way, we assume that
signals have semantic types. A semantic type of a signal is an abstract interpretation of a signal.
In the following, we consider signal processing applications. The knowledge of the semantics allows
us to formulate different views of one signal, that depends on the signature (interface, value type)
used to access the signal. We call such signals polymorphic signals (for a domain of applications).

2.3 Refinement of Interfaces

A second aspect of system design is the explicit realization of the communication/synchronization
which is implicitly specified by a model of computation. This can be done by the refinement of
interfaces. The refinement of interfaces transforms the computation-accurate model to a model
that has all ports of the implementation.

In digital ASICs, communication is realized by a clock signal and a controller that uses enable
signals to control the communication and synchronization of the single modules. For specification
of the ASIC itself at the register transfer level, the discrete event model of computation is used.
Note, that there are already approaches for the refinement of communication, such as SystemCSV ,
and the Master-Slave Library. However, they do not consider the fact that (at least in the ASC
library and SystemC-AMS) the execution of the modules is controlled via a coordinator interface.

Figure 4 shows the refinement of interfaces. A module inherits an ‘adapter class’. The adapter
class translates clock and enable signals to an activation of the module via its coordinator interface.

6



inherited Adapter

Module

coordinator (MoC)

coordinator
interface

Module

Controller

clock

en
ab

le

Figure 4: Refinement of interfaces by an inherited adapter class that uses the coordinator interface.

3 Polymorphic signals for signal processing applications

In the following, we describe a polymorphic signal for signal processing applications. In signal
processing applications, signals are more or less good approximations of continuous-time signals.
Such systems are specified with the following models of computation, depending on the level of
abstraction, and the implementation:

• Continuous-time signal flow (simulated by static dataflow with adaptive time steps).

• Static dataflow with constant time steps, but very often with different data rates resp. time
steps (multi-rate systems).

• Discrete event system.

• Netlists.

As motivated in section 2, the refinement of signal processing systems is characterized by modules
with different sample rates, ranges of values, etc. The polymorphic signal for signal processing
applications supports this refinement by providing the following functionality:

• It implicitely adapts the range of values: The range of values of the writing port is adapted
to the range of values of the reading port.

• It implicitely converts sample rates: The signal can have different samples rates for writing
and reading ports.

• It implicitely converts different models of computation: The polymorphic signal can be read
or written from the above mentioned models of computation.

• The polymorphic signal provides means for specification (or modeling) of noise and deviations
for semi-symbolic analysis in HELL [9].

Polymorphic signals can actually be used to couple modules in the supported models of computation
without requiring the insertion of additional converters. In case that analog netlists are coupled,
the polymorphic channel might even hide the complexity of simulator coupling — a designer just
sees the channel in SystemC-AMS, and an additional node in the analog simulator.

7



Implementation In SystemC, signals are accessed via ports with an interface that specifies a set
of methods. Modules call these methods. A signal that is connected to a port must provide concrete
methods that implement the methods called from the modules via the ports.

For each model of computation a port class is provided, for example asc_sdf_const_in for
static dataflow with constant time steps. At the ports of the modules, attributes are specified that
give additional information about the semantic interpretation of the signal to be accessed, such as:

• value_unit and value_size can specify a physical size that is associated with the abstract
value at port.

• Boundaries for the range of values [lb, ub].

• Time steps and rates of static (multi-rate) data flow.

• max_deviation and max_noise can specify allowed deviations of signals (for use in HELL,
[9]).

If there are inequalities or incompatibilities between the ports that access a polymorphic signal,
a conversion has to occur in order to permit a simulation. By default, virtual methods are called.
These methods give a warning, and call simple conversion methods. The conversion methods can
be overloaded by more appropriate ones, if needed.

value_unit and value_size of the reading port are compared with the writing port.
The range of values is checked and converted as follows: Let lbwrite and ubwrite be the lower and

upper bounds of the writing port and lbread and ubread the lower and upper bound of the reading
port. If the bounds are not equal, there might be a problem in the design; therefore, a warning is
given. Then, by default, the polymorphic signal maps a written value vi ∈ [lbwrite, ubwrite] from the
range of values of the writing port to a value vi,read from the range of values of the reading port
[lbread, ubread] as follows:

vi,read = vi ∗mult− lbwrite ∗mult + lbread with: mult =
(ubread − lbread)
(ubwrite − lbwrite)

The polymorphic signal can be written/read from ports of different models of computation. We
use the following approach: The polymorphic signal inherits and implements the interfaces of all
port types that are compatible with the signal as shown in figure 5. The methods that implement
the interfaces translate read- or write- accesses into an internal, abstract representation.

Module 1

Po
rt

 S
D

F Polymorphic signal

Internal,
abstract

representation

In
te

r-
fa

ce D
E

In
te

r-
fa

ce
 D

E

writing
method
calls from
SDF Port

In
te

r-
fa

ce
SD

F

In
te

r-
fa

ce C
T

Module 2

In
te

r-
fa

ce D
E

In
te

r-
fa

ce
SD

F

In
te

r-
fa

ce C
T

Po
rt

 C
T

In
te

r-
fa

ce
 C

T

reading
method
calls from
CT Port

Figure 5: Implementation of polymorphic signals in SystemC-AMS.

In the internal, abstract representation, signals are represented by a queue of tuples (value, time)
(‘events’, ‘samples’). An event (vi, ti) describes the point of time ti in sc time and vi is the into

8



double converted value that was written at point of time ti. (vi, ti) is the oldest element in the
queue, and (vj , tj) ((vi+5, ti+5)) is the newest element in the queue. The value is of the type double,
because all value types are subtypes of double. The point of time is of the type sc_time, which is
a long integer, which allows us representation of all possible points of time.

The size of the queue n is bounded and determined as follows:

n =
ts,max ∗ k

ts,min

where ts,max is the maximum possible time step, k the factor of multi-rate dataflow, and ts,min is
the smallest possible time step.

If there are more than n events in the queue the oldest event leaves the queue. All incoming
values will be saved that way, independent which model of computation is used. Then, the queue
of n events (value, time) describes the development of a signal in a time frame that covers at least
the ts,max of the past.

Figure 6: Abstract representation in polymorphic signal class by a queue of events (value, time).

In general, a queue of a signal is given by:

(vi, ti), (vi+1, ti+1), (vi+2, ti+2), ..., (vj , tj)

Figure 6 shows an example of a queue

(vi, ti), (vi+1, ti+1), (vi+2, ti+2), (vi+3, ti+3), (vi+4, ti+4), (vi+5, ti+5)

with j ≥ i, j − i + 1 ≤ n and n is the maximum buffer size.
If j− i + 1 = n (n = 6, the queue is full) and a new element (vj+1, tj+1) ((vi+6, ti+6)) is written,

the oldest element is removed. The queue becomes

(vi+1, ti+1), (vi+2, ti+2), ..., (vj , tj), (vj+1, tj+1)

and in the example

(vi+1, ti+1), (vi+2, ti+2), (vi+3, ti+3), (vi+4, ti+4), (vi+5, ti+5), , (vi+6, ti+6).

In the following, we describe the methods that modify (read/write) the abstract representation of
signals. Synchronization and simulator coupling are implemented in SystemC-AMS resp. the ASC

9



library (see [7, 2]). This synchronization first executes the modules of the AMS extensions using
the last values from the discrete event simulation, and then executes the discrete event simulator.

The following methods are used for writing the queue; the size of the queue is limited, and
adding a newer element automatically removes the oldest element:

Writing from SDF port: An event is added to the queue. For multi rate dataflow, several events
can be added at once.

Writing from DE port: The value of the event to be written is compared with the last event’s
value. If the values are different, request_update() is called and triggers an event in the DE
model. If the times are equal, the last event is deleted. Finally, the new event is added to the
queue. This ensures that writing DE processes only add one event (ti, vi) to the queue.

Writing from CT port: An event is added to the queue. This method is applicable to CT signal flow
model of computation. For netlists, additional actions are required that convert a physical
size to a value of the events.

Note, that writing from SDF or CT model of computation might also trigger an event in the DE
model of computation. However, this might not be useful or even cause problems. Usually, DE
models are not activated by events at the data signals. DE models are usually activated by explicit
control signals such as clock or enable signals, which is done by adapter classes that also provide
such signals, and require an explicit controller.

For reading the queue of events that models the abstract signal, we use the following methods:

Reading from SDF ports: The value of the newest event is returned. For multi-rate dataflow, a
conversion function is called which performs sample rate conversion. Sample rate conversion
computes a weighted average of the values since the last call. Because time steps are constant,
the time of the last call is the actual time minus the time step.

Reading from DE ports: The value of the newest event is returned.

Reading from CT ports: The value of the newest event is returned. This is applicable to the CT
signal-flow model of computation, and for netlists. For netlists, additional actions are required
that convert the abstract value to a physical size in a netlist.

Netlists and external simulators, Future work The implementation of polymorphic signals
covers signals in SystemC-AMS, but not yet nodes in netlists. Actual work is to implement interfaces
that support the coupling of external simulators, such as VHDL-AMS or SPICE, that also support
simulation of netlists. For coupling external simulators of netlists, we extend the polymorphic signal
using the following concept:

Netlists can write to polymorphic signals. This can be done by a port that leaves the netlist,
and that specifies the physical sizes (e.g. a current, or a voltage), and its conversion to an abstract,
non-conservative size. After conversion, this value is treated like a value from the CT signal-flow
model of computation.

Netlists can ‘read’ from polymorphic signals, but require a small conversion circuit that is added
to the netlist. This small conversion circuit is e.g. a current or voltage source, and is also specified
by attributes at the port. Current work is to automatically insert such a circuit by a polymorphic
signal to an external simulator.

10



4 Case studies

For evaluation we coose the design shown by Figure 7. It shows a control loop that controls the
voltage of a power driver. The voltage is an average of pulses generated by a pulse generator.
The voltage is measured, and a difference between the actual value and the programmed value is
computed. Then, a PI controller computes a new pulse width. The left part of Figure 7 shows
the executable specification, for which we used the continuous time model of computation. For
the refinement of computation we exchanged single modules with modules that use other models
of computation (CT-signal flow → SDF → DE). The right part of Figure 7 shows the design after
refinement of interfaces.

Power electronics

H(s)

(CT-signal flow)

Pulse
former
(DE)

+
CT

PI controller
(CT signal flow)

on_off

u_c

u_prog

ctrl_out

-

255

~ctrl_out

CT

Pulse
former
(DE)

+
PI

controller
(DE IF+ SDF)

R

C U(C)

T1

T2-

Vb

Bus interface,
registers, controller, ...

A/D

A
D

re
qu

es
t

A
D

re
ad

y

Figure 7: PWM driver: Executable specification (left), and after refinement (right).

The simulation of netlists that are coupled with polymorphic signals as shown in the right part
of Figure 7 is not yet supported by polymorphic signals. However, this is the focus of current work.

Polymorphic signals were especially useful for the determination of sample rates and bit widths,
which have an impact to the dynamic behavior. Figure 8 shows two different output signals that
are produced by changing the sample frequencies and models of computation.

0

20

40

60

80

100

120

140

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

va
lu

e

time

low bit rate
high bit rate

Figure 8: Output of PWM driver with different sample frequencies.

11



5 Discussion

SystemC provides a very general approach for modeling digital systems. It is a generic framework
for different models of computation by changing the semantics of signals that are accessed via inter-
faces. However, all models of computation are simulated by a discrete event simulator. Models of
computation that have different interfaces or value types can only be converted, if they are subtypes.
SystemC-AMS extends SystemC for modeling analog and mixed-signal systems. In Ptolemy II, dif-
ferent models of computation are implemented by (different) directors, and behavioral types allow
the coupling of different models of computation by considering the behavior of communication and
synchronization. However, blindfold use without knowing the semantics might cause problems. Se-
mantic types and polymorphic signals as proposed in this paper permit an implicit conversion of
different types and automatically treat semantic issues in the right way, e.g. the conversion of value
ranges or sample rate reduction in signal processing applications.

However, it is still unclear, if polymorphism is helpful, or if dynamically changing behavior
might be dangerous. In first experiences, polymorphic signals have proven very helpful, and allowed
us to model even complex systems with very little effort. Another advantage is that polymorphic
signals support mixed-level simulation: One can easily exchange a single module of the executable
specification with its implementation without the need to modify the structure of the overall system,
or to write converters.

For the design of complex and heterogeneous applications a combination of (careful) use of
behavioral types and semantic types could be attractive. Behavioral types are useful, when single
data objects are exchanged at different levels of abstraction. Semantic types and polymorphic signals
as proposed in this paper are useful if application specific knowledge is required for the conversion
between different models of computation.

References

[1] Edward Lee, Stephen NeuenDorffer, and Michael Wirthlin. Actor-Oriented Design of Embedded Hardware and
Software Systems. Journal of Circuits, Systems, and Computers, June 2003.

[2] Alain Vachoux, Christoph Grimm, and Karsten Einwich. Towards analog and mixed-signal soc design with
systemc-ams. In IEEE International Workshop on Electronic Design, Test and Applications (DELTA’04), Perth,
Australia, 2004.

[3] Christoph Grimm and Klaus Waldschmidt. KIR – A graph-based model for description of mixed analog/digital
systems. In European Design Automation Conference, Geneva, Switzerland, September 1996.

[4] Christoph Grimm and Klaus Waldschmidt. Repartitioning and technology-mapping of electronic hybrid systems.
In Design, Automation and Test in Europe ’98 (DATE), Paris, France, February 1998.

[5] Stuart Swan. An Introduction to System-Level Modeling in SystemC 2.0. Technical report, Open SystemC
Initiative, 2001.

[6] Edward Lee and Yuhong Xiong. A Behavioral type system and its application in Ptolemy II. Formal Aspects of
Computing, 2004.

[7] Christoph Grimm. Modeling and Refinement of Mixed Signal Systems with SystemC. In SystemC – Methodologies
and Applications. Kluwer Academic Publisher (KAP), June 2003.

[8] Karsten Einwich, Peter Schwarz, Christoph Grimm, and Klaus Waldschmidt. Mixed-Signal Extension for Sys-
temC. In Eugenio Villar and Jean Mermet, editors, System Specification and Design Languages. Kluwer Academic
Publishers, Apr 2003.

[9] Christoph Grimm, Wilhelm Heupke, and Klaus Waldschmidt. Semi-Symbolic Modeling and Analysis of Noise in
Heterogeneous Systems. In Forum on Specification and Design Languages (FDL ’04), Lille, France, September
2004.

12


