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Abstract 

In several publications, the extension of SystemC for the design and refinement of Analog and 
Mixed-Signal Systems were motivated, discussed and first concepts were introduced. On the basic 
of these publications and the work of the SystemC-AMS study group, this paper will discuss first 
concepts of a prototype implementation for generalized SystemC-AMS extensions. 

1. Introduction and Motivation 

SystemC will become increasingly a wide spread methodology for the design and refinement of 
complex digital hard- and software systems. However, state of the art systems consisting besides 
large digital hard- and software components of analog blocks and an analog environment. These 
analog modules must be considered in such early as possible design stages to prevent cost 
intensive design cycles from lower levels or silicon. Additional a tight impact of software and 
analog blocks is very crucial. These and other application specific motivations were leading to the 
development of a couple of proprietary solution for modeling of analog and mixed-signal 
components within SystemC [2,3,4]. 

In February 2002 a SystemC-AMS study group was founded to collect the requirements for 
SystemC-AMS extensions and generalize the existing experiences to define a generic and 
extendable SystemC-AMS framework. The first outcome was a “White paper” which describes 
beside the requirements a first structure for SystemC-AMS extensions [5]. 

On the basic of these concepts, some other publications showed possible examples for the 
description and refinement of systems from different application domains [11]. 

This paper will discuss first ideas how the described concepts can be realized by a C++ class 
library, how these extensions will be fit into SystemC and how those generic extensions can be 
synchronized with the discrete event SystemC-kernel. The resulting syntax and semantic will be 
demonstrated by a example motivated from telecommunication application. 

2. Brief Overview to the SystemC-AMS Concepts 

The focus of SystemC-AMS is on higher abstraction levels - in the specification and system 
design phases. However, SystemC-AMS must provide paths to lower levels of abstraction. 
Requirement for these design phases is besides an efficient and flexible system description style a 
high simulation performance. This simulation performance is required to simulate complete 
application scenarios within an overall model. To achieve this performance SystemC-AMS must 
be able to use different application and abstraction optimized algorithms (Models of 
Computation). Consequently, the system characteristics will be used to speed up the simulation 
significantly. An example is the use of the over sampled principle of many telecommunication 
systems. In this case for the simulation of the analog components usually simple and thus fast 
integration algorithm can be applied [2]. An other important aspect is the encapsulation of 
models. One objective of SystemC-AMS is to provide a framework for connecting different 
complex models (which can be protected IP’s also) to an overall system model. Thus it must be 



possible to reduce the interaction of the different models so far as possible to the communication 
over the connections (in general analog modules which will be simulated within the same 
simulator can influence each other also by the step width control or numerical effects like the 
truncation error calculation). Due to the fact, that a complex system is in general heterogeneous, 
different description styles and Models of Computation has to be combined within one system. 
To meet this requirements and objectives a layer structure (fig. 1) on top of the kernel layer of the 
existing SystemC was suggested. This layer structure consists of a synchronization, solver and 
view layer. The synchronization layer has to synchronize at one hand the discrete event SystemC-
kernel with the analog solvers and at the other hand the analog solvers among each other. The 
solver layer provides different algorithm for solving a more or less specialized class of problems. 
The solvers communicate only via the synchronization layer. Thus, the synchronization layer 
encapsulates the solvers. A solver has a specific interface by which the analog equations can be 
provided. This interface will be used by the view layer, which provides the user with 
methods/classes for the system description. This can be methods for the description of analog 
transfer functions or analog networks. In the case of networks, the view layer has to setup the 
equation system (e.g. by the Modified Nodal Analysis – MNA) and provide the equations usually 
in the form of matrices to a solver. 
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Figure: 1 Layered approach for SystemC-AMS extensions [5]. 

3. Ideas for an Implementation 
In this paragraph, the problems and possible solution for the implementation of the introduced 
concepts will be discussed. Therefore, the following main problems were figured out: 

• Integration into SystemC 
• Synchronization Layer 
• Solver Layer 

Integration into SystemC / View Layer 
The SystemC-AMS extensions must be fit with the description style provided by the currently 
available SystemC. This is especially important for the description of hierarchical models. It must 
be possible to describe a hierarchical model, which contains sub models of different analog and 
digital domains. 
However, the elaboration and simulation phases for analog modules are quite different. The 
simulation of SystemC is based on the communication of processes. This approach cannot be 
used generally for analog simulation. For analog simulation, usually an equation system using 
module specific information and their connectivity (structural information) has to be setup. In 
general, this equation system has to be solved globally. In opposite the SystemC kernel performs 
no structural analysis and the simulation is performed by locally module/process computation and 
communication / synchronization. An other issue is the time progress in SystemC, which is equal 



for all modules. This will be a hard restriction for implementing efficient synchronization and 
solver algorithms. 
Thus, at one hand, the description facilities of SystemC must be re-used but at the other hand the 
SystemC-AMS, extensions must be properly encapsulated from the SystemC-kernel and a 
separate much more complicated elaboration phase is required. In this elaboration phase, 
powerful methods for the system partitioning and structure exploration are essential. 
To achieve a homogenous description style, the analog module and interface/channel base classes 
will be derivate from the corresponding SystemC-classes. The basic elements for structural 
description in SystemC are: Modules, Ports, Interfaces and Channels. Figure 2 shows the 
principally derivation of analog extension base classes (prefixed by sca_ ) from standard SystemC 
classes (prefixed by sc_ and gray printed). Currently we assume that a sca_ - Module instance is 
assigned to one solver instance only and is always used only for primitive modules. Hierarchical 
modules, which can contain sca_ - Modules, are always “classical” SC_MODULE’s. 
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Figure 2: Simplified UML diagrams for Integration of AMS base classes into 
SystemC 

The sca-module base class will be used for the implementation of different view-layers. Thereby 
we have to distinguish between views, which primitives has to setup an equation system by the 
use of a solver interface and sca-module primitives which implementing an own independent 
solver. For the first case, the splitting into interface and channel is not required. The 
interface/channel represents a connection, which is used to set up the equation system instead of a 
communication channel that can be refined. However, for compatibility reasons this splitting will 
be retained. In the second case the communication between modules or solvers is similar to the 
communication between classical SystemC – modules. Thus, the splitting into interface and 
channel will be useful, whereby the channel has to be implementing the communication protocol 
and the interface to the synchronization layer. 
For analog domains we established new base classes, a solver interface base class and a solver 
base class. A solver implements one or more interfaces. The solver interfaces will be used by 
sca_modules. This interface will provide methods to set up the equation system. Thus, the 
sca_module classes correspond to the view layer and the solver to the solver layer of figure 1. The 
two layers communicate via this interface. 
To demonstrate the application of this base classes the implementation of a resistor and a 
capacitor for a linear analog solver will be shown. For the description of those networks the 



modules of the basic elements, ports for these modules and hierarchical modules and connectors 
(wires) including a special wire which signs the reference node (ground) are required. For the 
simulation of those networks, a solver is required, which implements a solver interface, which is 
used by the modules of the basic elements. 
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Figure: 3 Simplified UML – diagram for the definition of a linear electrical domain 
To set up the equation system of an electrical network consisting of linear elements like resistors, 
capacitors and inductors usually the Modified Nodal Analysis (MNA) [12] is used. Thereby every 
element adds so called matrix stamps into global matrices. The position of the matrix stamps of a 
certain instance depends from their connection – the node numbers. Thus, every element must use 
the solver interface to provide their specific stamps. 
The following code examples showing how the class structure will be used for the definition of a 
linear electrical primitive domain. 
 
//definition of a linear electrical primitive base class 
class sca_lin_elec_prim: public sca_module,  sca_lin_elec_solver_if  
{ 
                 : 
   virtual void matrix_stamps();    //system of equations contributions 
                 :                                  //for a Modified Nodal Analysis (MNA) 
   SCA_CTOR}( sca_lin_elec_prim) { …. } 
}; 
 
//implementation of a resistor 
class sca_r : public sca_lin_elec_prim 
{ 
  public: 
   elec_port a; 
   elec_port b; 
 
   double value ; 
 
   void matrix_stamps() 
   { 
     sca_a(a,a) +=  1.0/value;  //by operator overloading this realizes 
     sca_a(a,b) += -1.0/value; // sca_a(a.get_node_number(),b.get_node_number()) 
     sca_a(b,a) += -1.0/value; //sca_a is provided by sca_lin_elec_solver_if 
     sca_a(b,b) +=  1.0/value; 
   } 
               : 
}; 
 



//use of the defined primitive models inside a hierarchical model 
SC_MODULE(rc_net)  //standard SystemC macro 
{ 
   elec_port node1; 
   elec_port node2 ; 
 
  //definition of reference node (special wire) 
 elec_gnd  gnd; 
//definition of internal connector 
elec_wire w1; 
 
//definition of used instances 
 sca_r *r1, *r2; 
 sca_c *c1; 
 
 SC_CTOR(rc_net) //standard SystemC constructor 
 { 
    r1=new sca_r(“r1”); 
       r1->a(node1); 
       r1->b(gnd); 
       r1->value=100.0; 
 
  c1=new sca_c(“c1”); 
     c1->a(node1); 
     c1->b(w1); 
     c1->value=1e-6; 
             : 
  } 
}; 

Synchronization Layer 
The synchronization layer must encapsulate the analog solvers, the discrete event SystemC-kernel 
and the analog solvers among each other. In dependency of the application, different principles 
must be supported. Thus, constant and variable time step synchronization will be provided. The 
communication will be always directed. For feasibility reasons a backtracking of a solver or the 
digital part to a previous time must be prevented.  
For an efficient simulation and implementation are loops a crucial problem. To ensure the 
encapsulation, delay-less loops over solver instances should not allowed. If such a tight 
interconnection is required, the whole loop has to be modeled inside a solver instance. To 
determine the order of execution and the next synchronization time point the loop delay must 
known by the synchronization layer. 
In opposite to the connection of network elements the communication between solver instances 
among each other and with the discrete event SystemC kernel is directed and comparable with the 
communication between classical SystemC-modules. However, we must differentiate between a 
communication among analog solvers and with the SystemC-kernel. 
A communication with the SystemC-kernel is event driven. Thus, the signal value will change 
(jump) at discrete time points. In dependency of the analog solver, signals to the analog domain 
will be sampled or they lead to a re-initialization of the analog solver. Generally it will be a task 
of the analog solver how it handles changes at discrete event inports. 
For signals from the analog domain to the discrete event SystemC – kernel a kind of threshold or 
sampling mechanism is required to restrict the number of events. 
More complicated is a general solution for the communication among analog solver instances. 
Analog signals are time and value continuous, however for a numerical simulation they are 
calculated at discrete time points and the value pattern among this time points is usually assumed 



as linear. In general, the time distances of the calculation points are different for all solver 
instances and they can change dynamically. Thus, a mechanism is needed which provides the 
solver inputs with the appropriate value of an arbitrary time point. Therefore, usually linear 
interpolation is used.  
If we consider a loop-free connection of analog solver instances, the synchronization will be done 
by consecutive calls of the solvers, following the directed graph. Thereby always, a time interval 
(which should be so large as possible) will be calculated. Thereby the data items, which will be 
exchanged, are generally describing a wave as an arbitrary number of time value pairs. 
Much more critical is the case of a non-loop free connection of solver instances. In this case, a 
kind of delay in the loop back is required to prevent iterations and thus re-setting of solver 
instances. A kind of delay means, that at a solver instance output a time interval in the future 
compared to the input time is available. In this case, the solver scheduling can be done similar to 
the loop – free case. 
Currently we assume that the implementation of a delay-less loop over solver instances makes 
especially of performance and feasibility reasons no sense. Such loops have to be encapsulated 
into one solver instance. There they can be solved by the corresponding solver by setting up the 
equation system. 
An open problem is the detection of the loop – delay by the synchronization layer. Currently we 
use a manual assignment. 
Using this restriction, for the synchronization of analog solvers a kind of dataflow scheduling is 
required. 
Presently we prefer one synchronization object, which provides a restricted number of methods to 
setup the structure and to perform the synchronization.  
For the first prototype solution and experiments, we support constant time step synchronization 
only. In this simple case the view layer has to provide the synchronization layer with information 
about the time distances of the solver in- and outputs and if a loop of solvers with the loop delay. 
In this case, the solvers can be scheduled by the static dataflow model of computation, which 
leads to a high simulation performance, due the scheduling can be done once before simulation. 
 

Solver Layer 
A solver computes an analog equation system. Therefore, it will realize a more or less application 
specific (and thus efficient) algorithm. In this context, a solver can be a complex nonlinear DAE-
solver or in the simplest case, some sequential C-statements that calculate output values may in 
dependency of the time, input values and states. In this case the solver is not a separate object, 
instead they is implemented in the model. 
Generally, the solver needs at one hand an interface for providing the equation by the modules 
and at the other hand it must be able to provide the interface to the synchronization layer with the 
required information to manage the time control and the data exchange. 
Generally, it must be possible to restrict the simulation interval to each synchronization time step. 
A backtracking over synchronization time points is not allowed. 
In the simple case of constant time step synchronization, each solver has to calculate always a 
constant time interval. The solver reads inputs and writes the calculated outputs at equidistant 
time points. 
 

4. Demonstration of the use of the introduced implementation ideas 
In this section, a static dataflow oriented description style will be defined. This description style is 
very efficient for the simulation of signal processing oriented applications and is influenced by 
tools like COSSAP and SPW.  In those applications, the sampling rate is usually much higher 



than the system time constants. In such a case, the application of constant time step solvers is very 
efficient. Additional the differential equations are mostly linear, which allows the application of 
very simple and thus fast integration algorithm [2]. 
 
//definition of a static dataflow base class which provides the methods for dataflow calculations and 
//methods for the calculation of embedded analog functions like transfer functions 
class sdf_module : public sca_module,  
                                         sca_synchronization,   //provides access to the synchronization 
                                         sca_linear_behavior    //provides methods for transfer function, state  
                                                                             //space systems, … 
    
{ 
 
  virtual void init() {};             // initialization method 
  virtual void sig_proc();         // simulation method 
  virtual void post_proc() {};  // post processing method 
 
   sdf_module(sc_module_name nm) 
   { 
   //registration of data-flow methods to simple synchronization layer 
   //provided by sca_synchronization 
      SCA_SDF_INIT(init);                       //initialization method 
      SCA_SDF_RUN(sig_proc);              //signal processing method 
      SCA_SDF_POST(post_proc);          //post processing methods 
   } 
}; 
 
//definition of ports for static dataflow modules 
typedef sca_port<T,sca_sdf_synchronization_in_if<T> > sdf_in<T>; 
typedef sca_port<T,sca_sdf_synchronization_out_if<T> > sdf_out<T>; 
 
//ports for synchronizing with standard SystemC - signals 
typedef sca_port<T,sc_signal_in_if<T> >   sc2sdf_in<T> ; 
typedef sca_port<T,sc_signal_out_if<T> > sdf2sc_out<T> ; 
 
//the interfaces sca_sdf_synchronization_in_if  and sca_sdf_synchronization_in_if will be implemented 
//by the channel sdf_signal<T>, this channel will provide the synchronization with the required sample- 
//times and will establish the communication between the modules 
 
//example for the use of the defined dataflow description style  
struct low_pass: sdf_module 
{ 
 //ports 
 sdf_in<double>    in;  //port declaration 
 sdf_out<double> out; 
 
sc2sdf<bool>      gain_6dB; //event driven control signal 
 
 //parameter for cut-off frequency 
 double fc; 
 
 void init() { 
                       B[0]=1.0;                   //Coefficients of transfer function 
                      A[0]=1.0; 
                      A[1]=1.0/(2.0*M_PI*fc) 



                 } 
 void sig_proc()  { 
                              double gain; 
                              if(gain_6dB.read()) gain=2.0; 
                             else                          gain=1.0; 
 
                            out= gain * sca_ltf(A,B,S,id,in);    //transfer function method provided  
                          }                                                    //by sca_linear_behavior 
 
  private: 
             sca_vector        A, B, S;     //vector class holds coefficients and states 
            sca_dae_id        id;             //signs system of equations  
    };                                                //if more than one used per module 
 
//those dataflow modules can be connected with above described networks by the definition of network 
//elements with dataflow in-/outports like a voltage source which is driven by a dataflow signal 
 
class sca_vsdf : public sca_lin_elec_prim 
{ 
  public: 
   elec_port a;                         //electrical ports 
   elec_port b; 
 
  sdf_in<double> voltage;   //dataflow inport 
 
   double value ; 
 
   double v_t() 
   { 
     return voltage.read(); 
   } 
 
  long opt_eq ;  //number for additional equation (required for voltage source by MNA) 
 
   void matrix_stamps()  //matrix stamps of voltage source 
   { 
     opt_eq=sca_get_add_eq(); 
 
     sca_a(a,opt_eq)  =   1.0; 
     sca_a(b,opt_eq)  = -1.0; 
     sca_a(opt_eq,a)  =  1.0; 
     sca_a(opt_eq,b)  =  -1.0; 
 
    sca_q(opt_eq)    = v_t;  //assign method which will be called by the solver 
   } 
               : 
}; 
 

5. Conclusion 
The paper presented first ideas for an implementation of a generalized and generic SystemC-AMS 
extension. An efficient implementation seems to be feasible. The complexity is manageable by a 
good encapsulation of the solvers by simple and restricted synchronization schemes. The existing 
SystemC has not been changed. However, it has been evaluated, that all used interfaces are 



defined in the Language Reference Manual available for a short time. For the definition of a 
generalized and applicable solver - synchronization further work has to be done.  
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