
FDL’01 Sept. 3-7 2001 Lyon, France

SystemC Extensions for Mixed-Signal System Design
Karsten Einwich1, Christoph Clauss1 , Gerhard Noessing2, Peter Schwarz1, Herbert Zojer2

1Fraunhofer, IIS Design Automation Dept. Dresden
2Infineon MDCA Villach
Abstract
State-of-the-art systems especially for the telecommunication and internet market, consist of analog
and digital parts. The challenge for future designs is the tight interconnection between all different
domains (software, digital control, hardware, signal processing, ...). Unfortunately, currently
available tools and methodologies for overall system specification and simulation focus on one or
two domains only (like VHDL, Verilog, SystemC). The presented methodology allows an overall
system specification and verification for mixed-signal systems in a homogeneous environment based
on C++.

1 Introduction
By decreasing chip structures, the analog part of a mixed-signal device will become more and more
dominant with respect to chip area, power consumption and silicon costs. Thus it is essential to shift
analog functionality to digital hard- and software and to compensate the non-perfect properties of the
analog part. Therefore the coupling between analog and digital hard- and software will become
tighter and tighter. For the design of digital hardware, software and algorithms of such systems it is
essential to include the analog components and the system environment into an overall simulation.
Therefore simulation performance is very crucial.
Hardware description languages like VHDL-AMS or Verilog-AMS allow principally a description
of a mixed-signal system. But the description style especially for higher abstraction levels is often
not suitable. The performance of currently available mixed-signal simulators is orders of magnitude
to low for an overall system verification of a complex SoC. Because of the time-consuming process
of standardization and tool development „classic“ hardware description languages cannot react fast
to new requirements. The development and standardization of VHDL-AMS tooks more than 10
years.
Recently there have been a lot of activities for a wide usage of C++ as a hardware description
language (SystemC [SYN00], SpecC [GAJ00], Cynlib [CYN99], OCAPI [VER99]). Unfortunately
these activities cover only digital domains (hardware, software and communication). Analog
domains currently are not considered.
This paper shows some possibilities to extend these existing digital approaches to signal processing
and mixed-signal/analog domains. First results, are presented for a chip of a line driver for a ADSL
system.

2 Domains, Abstraction, Model of Computation
A complex (electrical) system has to described w.r.t. different domains. The splitting into domains is
subjective and depends strongly on the applied design methodologies. E.g. for a wired
telecommunication system we can distinguish the following domains:
• Linear electrical network
• Analog filter
• Digital filter
• Signal processing algorithm
• Control algorithm
• Interface algorithm
The „creative“ design process can start and stop at different abstraction levels. The starting point
depends on the complexity and re-use aspects, the stopping is determined by the availability of
1

compiler and synthesis tools. By choosing an abstraction level, some properties of the model of
computation (MoC) are assumed explicitly or implicitly, and by describing the system with a
simulateable language the MoC is usually fixed.

Principally different
domains at different
abstraction levels can be
mapped on the same
MoC. But a MoC is
developed only for a few
domains and abstraction
levels. Using a MoC
outside his main focus
means usually a
performance loss and/or
an increasing modelling
effort. Table 1 gives
example for MoC’s and

his main focus and Table 2 a selection of tools/languages and his MoC’s.

The consequence is that the different design groups are using different tools, e.g. the algorithm design
group uses C/C++ based tools and Matlab, the system design group uses tools like Matlab, COSSAP
and SPW, the digital design group uses VHDL/Verilog based tools and the analog design group
SPICE or Mixed-Signal tools like Saber and AdvanceMS. Bringing these different views together is
always a big issue. Such possibilities are tool couplings [EIN96] or the creation of an overall model,
e.g with VHDL-AMS. The first method is difficult to handle and the second one needs a high
additional modelling effort. Both ways are not optimal with respect to performance.

Through its powerful generic
model of computation, SystemC
2.0 supports a wide range of
MoC’s for discrete time systems
(Figure 1 shows a selection). But
MoC’s for analog modeling cannot
be constructed.
Driven by our mixed-signal
applications we are developing an
extension of SystemC for linear
DAE’s and frequency domain

simulation. The linear DAE-solvers will be integrated into the synchronous dataflow MoC.

Tool/language Model of Computation

VHDL/Verilog Event driven

VHDL-AMS/Verilog-AMS Event driven + nonlinear DAE’s, frequency domain

COSSAP/SPW synchronous/dynamic dataflow

Matlab/Simulink Linear/nonlinear DAE’s, signal flow, (cycle based), fre-
quency domain calculations

Ptolemy Datflow, signal flow, event driven

SDL token driven

Programming languages Sequential processes

Table 2: Tools/languages and the supported MoC

Model of Computation Field of application

Event driven Digital/timing

Cycle based Digital/RTL

Remote process call (RPC) Software, Communication

Synchronous dataflow System design digital filter/algorithm

Kahn process networks/dynamic dataflow Algorithm design

Frequency domain System design telecommunication

Linear DAE’s Mixed-Signal-System design

Signalflow Mixed-Signal-System design

Nonlinear DAE’s Analog circuit design

Table 1: Main focus of MoC’s

Kahn Process
networks

Remote process
call Event driven

linear DAE’s

frequency domain

synchronous multi
rate dataflow

SystemC 2.0 Mixed -
Signal extensions

Fig. 1 Examples for SytemC MoC’s and proposed extensions
2

3 Mixed-Signal System example
Figure 2 shows a
extremely
simplified
system view on a
so-called
Subscriber Line
Interface and
Codec Filter
(SLICOFI)
system [ZOJ00].
Such systems
establish the
connection
between the
analog subscriber

line and the digital (e.g. PCM) transmission network. This system is realized by different IC’s (chip-
set) and external (analog) components. The chip-set includes a high-voltage line driver, analog filters,
a/d- and d/a-converters, digital hardware filters, dsp-algorithms, control algorithms and interface
algorithms. The new design challenge for such systems is data transmission parallel to voice (ADSL).
In system design the external components and the environment, consisting of the subscriber and the
subscriber-line, will be considered as linear analog networks. The high-voltage driver is modeled by
unidirectional blocks (without feedback from the previous block). Thus, the synchronous dataflow
(SDF) MoC can be used for block scheduling. Dynamics (e.g. poles and zeros of the amplifier) are
modeled by using embedded linear DAE’s. Nonlinearities may be included as static or as an black
box model identified by measurements or circuit simulation. The analog filter (e.g. pre- and post-
filter), d/a- and a/d-converter modeled similarly. For the digital filter and dsp-algorithm dataflow
blocks are used also. The control algorithm software is embedded in an event-driven digital model
using a bus functional model. The interfaces are described at RT-Level.

4 Mixed-Signal SystemC extensions
Dataflow
Within the generic core language of SystemC 2.0 a dataflow MoC can be constructed. But we expect
for synchronous dataflow (SDF) a low performance compared to a specialized scheduler.
For the described application the SDF performance will dominate the overall performance. Thus we
introduce a specialized scheduler for SDF-clusters (independent graph of SDF-blocks). Additionally
we include some properties which makes the synchronization with time driven domains more
efficient and easier. Furthermore we perform a pre-simulation dead-lock detection and localization
(so far as possible) which includes also dead-locks in conjunction with a time driven domain (e.g.
event driven). Nevertheless we will become compatible with the SystemC dataflow modeling style
which is still under discussion. In this case our scheduler can be used for SDF - clusters in
conjunction with the scheduler of the SystemC reference implementation.
Linear equation solver principle
For a lot of applications in system level design, a linear equation solver is sufficient for the simulation
of dynamic analog blocks. These blocks can contain transfer functions, state-space equations or
linear electrical networks. In the linear case the resulting system of equation (1) can be solved without
iteration. In connection with a sampled system, these blocks can be solved using a constant step-size
h normally. If the backward Euler formula is applied the equations are transformed into a linear

pofiΣ∆

prefiΣ∆

Fig. 2 Use of different MoC’s in a mixed signal design

Embedded linear DAE’sDataflow

Programming languageCycle based/event driven

network (results in linear DAE’s)

hook
(telephone receiver)

Protection net
Subscriber

* Blocks with frequency domain behavior

In
te

rfa
ce

s

DSP
algorithm

Controller

Software
KIT

Control

KV2W

High voltage driverMixed signal chipDigital chip

* * * * *
*

*

3

system of equations (2) with constant matrices. It can be solved using a very fast Gaussian

elimination algorithm, because the factorization phase is carried out only once in the initialization
phase [DER86]. If the assumption of a constant step-size cannot be fulfilled or the error will become
to high a more complex (and thus slower) algorithm will be used.
Solving the equation of RLC-networks
To calculate the node voltages and (if necessary) some
branch currents of a linear circuit the system of
equations (1) have to be set up. Using the modified
nodal analysis method (MNA) [HRB75] the matrices
A, B, and the vector q can be simply constructed by
utilizing the typical contributions („stamps“) of each
linear circuit element (R, L, C, G, ...). Within the C++
language this is realized by a method matrix_entries,
which is called in the model construction phase before
the simulation is started. As an example, the
contributions of a resistor R are described in (fig.3) (a
resistor delivers no contribution to matrix A and
vector q, node0 and node1 are the node numbers).
The solution of the system of equation delivers the
nodal voltages only. Thus each element has a method
for an optional current calculation. In this way, models
of linear elements like R, L, C, controlled sources,
linear transformers and transmission lines (by
scattering parameters [VOL95]) are implemented.
Frequency domain simulation
The linear DAE’s can be solved in the frequency domain also. For dataflow and event driven blocks
with frequency domain behavior an additional frequency domain implementation is necessary. For
simulation a linear equation system has to be constructed and solved for each frequency point.

5 MoC synchronization
Synchronous dataflow and linear networks
Each independent network will be included during simulation set-up as a dataflow primitive block.
The in- and out-ports of this block derived from the connections between dataflow blocks and the
analog network (e.g. a dataflow input to a voltage source or a node voltage which is used as input for
a dataflow block). If this dataflow block called from the scheduler, a time interval is calculated which
is equal to the time distance of two samples. Usually we perform one analog time step. This is mostly
sufficient for system level simulation, especially in systems with single bit Sigma-Delta-converters
with high oversampling rates. Nevertheless we are able to oversample the analog network, whereby
we can hold or interpolate the input signals.
SystemC (event driven) and synchronous dataflow
For synchronization SDF and SystemC, the sample time must be specified at least at one point in a
SDF-cluster. This is done by setting a port attribute. Thus the SystemC to SDF synchronization
library (hidden in port classes) can activate the SDF-cluster and respectively the SDF cluster can
resume if data needed. Thus the SDF-cluster samples the signals from SystemC and schedules events
(if the sample is not equal to the previous sample) to SystemC signals.

(eq. 1)Ax· Bx q t()+ + 0= (eq. 2)1
h
---A B+
 x 1

h
---Axlast q–=

class R : elec_elements {
 unsigned long node0, node1;
 public:
 elec_port a;
 elec_port b;

 R(elec_wire& aw, elec_wire& bw, double val):

elec_elements(Res)
{ a.bind(aw); b.bind(bw); value=val; };

 void matrix_entries(fhg_matrix_sq<double>& A,
 fhg_matrix_sq<double>& B,
 fnct_vector& q)
 { //matrix entries
 B(node0,node0) += 1.0/value;
 B(node0,node1) += -1.0/value;
 B(node1,node0) += -1.0/value;
 B(node1,node1) += 1.0/value;
 }

//method for current calculation
double i_t(double* x, double dt)

{ return((x[node0]-x[node1])/value); }
};

Fig. 3 Implementation of a resistor
4

6 Examples for Mixed-Signal Descriptions
Figure 4 shows the C++ description of a pure electrical network, Figure 5 is the same network as
hierachical module whereby vbslic is controlled by a dataflow inport and i2v converts a current to a
dataflow outport. Figure 6 shows a dataflow primitive with an embedded DAE-system (second order
lowpass). Besides this primitive has a SystemC event driven inport which controls the cut-off
frequency. The structural descriptions (Figure 4 and Figure 5) can be generated by a netlister.

// signal tracing, Matlab, WSF and CSDF
// currently supported
trace tr1(MATLAB,“tr1.dat“);

tr1.add(&w1); //node voltage
tr1.add(&lp); //current through lp

:

:
elec_wire w1, w2, w3, w4, w5, tr; //nodes
elec_gnd gnd; //reference node

 double Rp1=60.0, Rp2=40.0; //parameter
 double Cp=1e-12, Lp=1e-3;

V vbslic(w1,gnd,2.0);
R rp1 (w4,w2,Rp1);
R rp2 (w2,w3,Rp2);
C cp (w2,gnd,Cp);
L lp (w3,tr,Lp);
CCVS i2v (w5,gnd,w1,w4,1.0); //Current Controlled Voltage Source vbslic

i2v

rp1 rp2 lp

cp

w1 w4

w2
w3 tr

w5

Fig. 4 C++ description of a linear electrical network

ELSDF_MODULE(prot_net)
{
sdf_inport<double> slic_out;
sdf_outport<double> i_tr;

elec_port tr;

double Rp1, Rp2, Cp, Lp; //parameter

Vsdf *vbslic; C2SDF *i2v
R *rp1, *rp2; C *cp; L *lp;

Fig. 5 Hierarchical netlist with SDF-in- and out-ports and a electrical port

elec_wire w1, w2, w3, w4;
elec_gnd gnd;

ELSDF_CTOR(prot_net) {
vbslic=new Vsdf(w1,gnd,slic_out); //voltage source with sdf-inport
rp1 =new R(w4,w2,Rp1);
rp2 =new R(w2,w3,Rp2);
cp =new C(w2,gnd,Cp);
lp =new L(w3,tr,Lp);
i2v =new C2SDF(w1,w4,i_tr,1.0); //conversion current to sdf

} };

Fig. 6 Primitive with SDF-in- and out-ports and SystemC control in-port

SDF_MODULE(pofi_pcb)
{
sdf_inport<double> INPUT; //dataflow inport
sc2sdf_inport<bool> ADSL_LITE; //SystemC inport
sdf_outport<double> OUTPUT; //dataflow outport

double FG0, FG1, K, h; //parameters

LTF_ID ltf_id0, ltf_id1;
fhg_vector<double> A0,A1, B0,B1, S;

void attributes() { //port attributes for synchronization
ADSL_LITE.h=h; //h sample time

}

void init() {
double wpre0; double wpre1;
wpre0=2.0*M_PI*FG0; wpre1=2.0*M_PI*FG1;
A0(0)=1.0; A1(0)=1.0;
A0(1)=1.41/wpre0; A1(1)=1.41/wpre1;
A0(2)=1.0/wpre0/wpre0; A1(2)=1.0/wpre1/wpre1;
B0(0)=K; B1(0)=K; }

void sig_proc() {
if(ADSL_LITE)

OUTPUT=LTF(A1,B1,S,ltf_id1,INPUT);
else

 OUTPUT=LTF(A0,B0,S,ltf_id0,INPUT);
}

SDF_CTOR(pofi_pcb){}
};

H s()
K

1 1 41,

2πFG()
2

-----------------------s2 1
2πFG
---------------s+ +

---=
5

7 First results
Figure 7 shows the top level netlist of an ADSL line driver front-end. This front-end is modeled by
aprox. 50 linear network elements (R, L, C, controlled sources). Figure 8 shows the simulation results
compared to a Saber AC and transient simulation. The AC simulation is used as reference. For the
Saber and C++ transient simulations we used a multi tone signal with logarithmically spaced
frequencies. By post-processing with Matlab (FFT, ...) the transfer function was calculated and
compared with the AC-simulation. The samplerate was fixed to 17Mhz by the ADSL-chip set. For
40 ms real time Saber tooks with default parameters 2670 sec. and the C++ description 122 sec. We
checked that the time for applying the input-signal and tracing the output signals is negligible.

8 References
[BCP89] Brennau, K.E., Campbell, S.L., Petzold, L.R.: „Numerical Solution of initial value problems in Differential-Algebric

Equations“, North-Holland, New York, 1989
[CYN99] CynApps, „Systems Modeling with Cynlib“, www.cynapps.com, 1999
[DER86] I.S.Duff, A.M.Erisman, J.K.Reid, „Direct Methods for Sparce Matrices“, CLARENDON PRESS, Oxford, 1986
[EIN96] K. Einwich.; Schwarz, P.; Trappe, P.; Zojer, H., „Simulatorkopplung für den Entwurf komplexer Schaltkreise der

Nachrichtentechnik“, 7. ITG-Fachtagung "Mikroelektronik für die Informationstechnik", Chemnitz, 18./19. März 1996,
139-144

[GAJ00] D. D. Gajski, J. Zhu, „SpecC Specification language and Methodology“, Kluwer Academic Publishers, Boston 2000
[HRB75] Ho, C.W, Ruehli, A.E., Brennau, P.A., „The Modified Nodal Approach to Network Analysis“ IEEE Transa. CAS-22

(1975) June, 504-509
[MAY00] A. Mayer, „SystemC Applications“ First European SystemC Users Group Meeting, Munich, January 2000
[NAG75] Nagel, L.W., „SPICE2: A Computer program to simulate semiconductor circuits“ Berkeley University of California,

1975
[RUF00] J. Ruf, D.W. Hoffmann, T. Kropf, W. Rosenstiel, „Simulation Based Validation of FLTL Formulas in Executable System

Descriptions“, FDL2000, Tuebingen, 7.9.2000
[SCH98] Schwarz, P.; Clauß, C.; Einwich, K.; Knöchel, U.; Matz, K., „Hybride Simulation nachrichtentechnischer Systeme“, 12.

ASIM-Workshop "Systemsimulation", Zuerich, 15.-18.9.1998
[SPE00] M.Speitel, B.Niemann, R.Büttner, „The Application of SystemC in an Industrial Project“, FDL2000, Tuebingen 4.-

8.9.2000
[SYN00] Synopsys Inc., CoWare Inc., Frontier Design Inc. „SystemC User’s Guide Version 1.1“, www.systemc.org, 2000
[VAN00] G.Vandersteen et.al., „A methodology for efficient high-level dataflow simulation of mixed-signal front-ends of digital

telecom transceivers“, DAC2000, Los Angeles
[VER99] S. Vernalde, P.Schaumont, I.Bolsens, „An Object Oriented Programming Approach for Hardware Design“, IEEE

Computer Society Workshop on VLSI’99, Orlando, April 1999
[VOL95] I. Voll, J. Haase, „Rekursives Faltungsmodell für ein allgemeines Netzwerksimulationsprogramm“, 40. Intern. Wiss.

Kolloqium der TH Ilmenau, 7.-9.Sept. 1995, Band 3, 269-274
[ZOJ00] B. Zojer, R. Koban, J. Pichler, G. Paoli, „A Broadband High-Voltage SLIC for a Splitter- and Transformerless Combined

ADSL-Lite/POTS Linecard“, IEEE J. Solid-State Circuits, vol. 35, pp 1976-1987, Dec. 2000

Fig. 8 Transient simulations compared in
frequency domain

10
2

10
4

10
6

−50

−40

−30

−20

−10

0

10

Frequency behavior voice to line

f(Hz)
db

10
2

10
4

10
6

−200

−100

0

100

200

f(Hz)

gr
d

10
2

10
4

10
6

−0.02

0

0.02

0.04

0.06

0.08

Difference to Saber AC

f(Hz)

db

10
2

10
4

10
6

−0.2

−0.15

−0.1

−0.05

0

0.05

f(Hz)

gr
d

C++

Saber transient

C++

Saber transient

transformerhybrid

receive filter

b-filter

voice/data

subscriber

twisted pair line

dc/voice line
driver

data

voice/dc

v(iout)

data

echo

Fig. 7 ADSL-Line driver front end network
6

	1 Introduction
	2 Domains, Abstraction, Model of Computation
	3 Mixed-Signal System example
	4 Mixed-Signal SystemC extensions
	Dataflow
	Linear equation solver principle
	Solving the equation of RLC-networks
	Frequency domain simulation

	5 MoC synchronization
	Synchronous dataflow and linear networks
	SystemC (event driven) and synchronous dataflow

	6 Examples for Mixed-Signal Descriptions
	7 First results
	8 References

