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Abstract

SystemC is emerging as a de-facto standard for sys-
tem design but it still lacks support for continuous-time
models of computation and multi-domain systems. This
becomes an issue as the systems under consideration are
often heterogeneous. An effort has recently started to al-
low the SystemC framework to address this need by the
definition of the so-called SystemC-AMS (Analog and
Mixed-Signal) extensions. This paper defines the context
of the extensions with respect to requirements and in-
ferred design objectives. It also gives a rationale for each
design objective. Finally, it presents preliminary seed
works that will influence the development of the SystemC-
AMS extensions and provides some information on the
next steps.

1. Introduction

System-on-chip design is a complex task as the tar-

geted systems are more and more heterogeneous. Heter-

ogeneity occurs in the underlying models of computation

(MoCs) that are used to describe hardware and software

components of the system (e.g. discrete-event, dataflow,

FSMs, sequential, continuous-time). Heterogeneity also

occurs in the nature of the components of the system (e.g.

different disciplines such as electrical, mechanical, fluid-

ic). One way to cope with heterogeneity is to work in a

consistent design framework. SystemC is emerging as a

de-facto standard for system design but it still lacks sup-

port for continuous-time MoC and multi-nature systems

[10]. This document presents the foundations on which

the mixed-signal extensions to SystemC, named Sys-
temC-AMS, will be developed.

This paper is organized as follows. Section 2 discuss-

es the requirements that motivate the extension of the

SystemC environment to support analog and mixed-sig-

nal systems. Section 3 gives the design objectives that are

derived from the requirements. A rationale is given for

each of them. Section 4 presents a number of application

examples that already started to explore the SystemC ca-

pabilities to model and simulate analog and mixed-signal

systems. Section 5 draws some conclusions and outlines

the next steps.

2. Motivations and Requirements

The systems we are considering in this paper are het-

erogeneous in nature in that they may include electronic

and non-electronic parts. The electronic parts may in-

clude digital or analog hardware components or software

components. As an example, a typical mobile communi-

cation system today includes an RF front-end, analog and

mixed-signal components for signal amplification, clock/

data recovery, and A/D-D/A conversions, digital compo-

nents (possibly including processors and software) for

data processing. The non-electronic parts may include

sensors or actuators. As an example, an antilock brake

system includes speed sensors and hydraulic compo-

nents, in addition to electronic parts. Heterogeneous sys-

tems therefore include a great deal of components whose

behavior is continuous in time.

The design of such heterogeneous systems encom-

passes many different engineering disciplines and raises

the issue of delivering correct and efficient products in

ever shortening time frames. Design techniques that can

address the issue include the capability to develop a de-

scription (a model of) of the whole system, its parts, and

its environment such that key characteristics can be ex-

tracted and verified. Extraction and verification are usu-

ally performed by static analysis, dynamic simulation or

formal proof. Due to increasing system complexity, it is

required to support modeling and simulation at high lev-

els of abstraction. On the other hand, accurate verifica-

tion also usually requires co-simulation with circuit-level

models.

Three application domains are considered for the re-

quirements, namely signal processing dominated appli-

cations (telecommunications and multimedia), RF/

wireless communications, power electronics and auto-

motive.

Signal processing dominated applications are essen-

tially executing operations such as (de)coding, compress-
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ing, or filtering data streams with fixed sampling rates.

Data processing makes extensive use of arithmetic func-

tions. A static scheduling of operations may be usually

derived from the data dependencies to achieve regular

and compact system architectures. As modern signal pro-

cessing systems more and more include both programma-

ble and dedicated components, there is a need to use

design technologies that are capable of mapping applica-

tions to heterogeneous architectures [13].

RF/wireless applications are essentially realized us-

ing an RF front-end part and a baseband part. The design

of a RF transceiver at system level, i.e. taking into ac-

count both the analog and the digital components and

their interactions, is usually done using dataflow models

to improve simulation efficiency while still achieving an

acceptable level of accuracy [18].

Both signal processing and RF/wireless applications

require to model and to simulate both the time-domain

and the frequency-domain behavior of key components

(amplifiers, mixers, oscillators, etc.). In addition, many

frequency-based simulation methods have been devel-

oped to overcome limitations of time-domain methods

when designing RF circuits [12].

Power electronic and automotive applications share

the distinguished requirement to design multi-domain, or

multi-discipline, systems, i.e. systems including non

electronic parts (mechanical, fluidic, thermal, etc.) [11].

Such systems usually lead to stiff nonlinear models that

exhibit time constants whose values differ by several or-

ders of magnitude. This property imposes strong numer-

ical constraints to simulation algorithms.

The design of automotive systems more and more re-

quires to develop virtual prototypes including software-

in-the-loop and hardware-in-the-loop components [5].

The latter kind of prototype also implies real-time mod-

eling and simulation capabilities, meaning that models

must execute in time steps that are bounded by some

maximum execution time or response time. It should be

noted that real-time capabilities may also be required in

signal processing applications.

3. Design Objectives

Design objectives for the SystemC-AMS extensions

are inferred from the requirements discussed in Section 2.

It is apparent from that discussion that the domain cov-

ered by the AMS extensions is pretty large. It will be

therefore necessary to proceed by levels or phases when

developing the extensions. This issue will be addressed in

Section 5.

Design objectives define the context in which the ex-

tensions will be designed as well as the goals and the con-

straints it will have to meet. A rationale is given for a

design objective where some more information not ex-

plicitly linked to the requirements discussed in Section 2

is required. The given rationales are not intended to bind

the objectives to particular implementations. If it seems

to be the case, the implementation aspects should be con-

sidered as illustrative only. The formulation of the design

objectives is inspired from similar work done for the

IEEE 1076.1 (VHDL-AMS) hardware description lan-

guage [17].

SystemC-AMS must be suitable for the
description and the simulation of heterogeneous

systems.

SystemC-AMS is primarily intended to support the

development of executable specifications. Support for

synthesis, i.e. the process of deriving an implementation

from an abstract description, is out of the scope as auto-

mated synthesis of analog, mixed-signal, and mixed-

technology systems are not yet mature enough.

SystemC-AMS is also primarily targeted towards sys-
tem design. This means that it has to be effective at man-

aging complexity, both in terms of descriptive

capabilities and simulation performances. Traditional

ways to address this issue is to support abstraction and hi-

erarchy.

The development of system-level executable specifi-

cations of continuous-time parts include the modeling of

signal processing functions, abstract behaviors (equa-

tions), hierarchical structures, and the environment in

which the modeled system is intended to work.

SystemC-AMS must be an extension of the
SystemC language.

SystemC provides a consistent definition of how both

structure and behavior of discrete time systems can be de-

scribed and simulated. The SystemC simulation seman-

tics is defined by a scheduler and an execution model that

support both hardware-oriented and software-oriented

modeling [10].

The so-called SystemC core language provides a gen-

eral-purpose framework that supports a variety of models

of computation (MoCs), abstraction levels, and design

methodologies used in system design. Roughly speaking,

a model of computation is a set of (semantic) rules that

define the interactions between components of the model.

The kind of model components and rules depend on the

level of abstraction considered. For example, the discrete
event (DE) MoC views a system as a set of concurrent

processes interacting through signals. Processes are acti-

vated when signals whose values are read in the process-

es experience a value change, a.k.a. events. The rules

define how signals get and hold their values and how pro-

cesses are activated. DE models are typically suitable for

RTL hardware modeling.
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As another example of MoC, the dataflow (DF) MoC

views a system as a directed graph where the vertices rep-

resent computations and the edges represent totally or-

dered sequences (or streams) of tokens. In the particular

case of static or synchronous dataflow (SDF), the sched-

uling of the operations is static and one cycle of the

scheduling consists in traversing the graph until all re-

quired nodes have been visited and their corresponding

computations executed. DF models are typically suitable

for signal processing applications.

One distinguished aspect of a MoC is how time is ab-

stracted. Time can be handled as clock ticks, as an integer

multiple of a base time (a.k.a. the minimum resolvable

time), or as a real value. Model components may also in-

teract in a timeless way through causality rules in so-

called untimed functional models.

What is currently missing in the SystemC design

framework is the capability to model and simulate contin-

uous-time systems. Analog and mixed-signal extensions

for SystemC are currently scheduled for the release 4.0

whose delivering date is not yet defined (the current re-

lease of SystemC is 2.0).

SystemC-AMS must support continuous-time
models of computation.

Continuous-time (CT) MoCs are based on the theory

of differential and algebraic equations (DAEs) that have

the following form:

(1)

where F is a vector of expressions, x is a vector of dif-

ferential variables (unknowns), y is a vector of algebraic

variables (unknowns), is a vector of derivatives of the

x unknowns with respect to time, t is the time (indepen-

dent variable).

DAEs have been studied extensively by numerical

mathematicians for almost 30 years [3]. Most DAE sys-

tems have no analytical solutions, so only an approximat-

ed solution can be found using numerical techniques. The

order of the highest time-domain derivative in a DAE

system relates to the so-called index of the system. An or-

dinary differential equation (ODE) system is a DAE sys-

tem of index 0. Several numerical solution methods exist

for low index DAEs and methods have been developed to

reduce the index by augmenting the number of equations.

This is mainly required to solve DAEs generated from

mechanical system models.

Several tools for continuous system simulation have

been developed using languages derived from the Con-

tinuous System Simulation Language (CSSL) specifica-

tion [1]. Most of them support the description of the

behavior of a dynamic system as first-order ODEs of the

form:

(2)

where u denotes the input vector of the system. The

are discretized using an explicit numerical integration

formula such as the Forward Euler or the Runge-Kutta

formulas and the equations are sorted to get a sequence of

assignments that will be used repeatedly to compute the

values of the unknowns over time for any set of input val-

ues. In case of algebraic loops exist in the system of equa-

tions, meaning that there is a cyclic dependency between

unknowns such that it is impossible to define a sequence

of assignments, iterative numerical methods such as the

Newton-Raphson method has to be used [4].

For a lot of applications in system design, modeling

the continuous-time behavior as linear ODEs is suffi-

cient. Typical formulations that produce linear ODEs are

transfer functions, state-space equations, or equation for-

mulation of linear electrical networks. In addition, the re-

sulting system of equations can be solved without

iterations [6]. This fact will allow to have a first version

of SystemC-AMS that already provides useful function-

alities while avoiding the need to implement a full-fea-

tured DAE solver. It is planned that subsequent releases

of SystemC-AMS will support nonlinear DAEs and

equations in implicit form.

One important aspect of equations (1) and (2) is that

initial conditions must be provided for some or all un-

knowns to correctly model the dynamic behavior of a

continuous-time system. A related issue is the handling

of discontinuities that has two aspects, namely the detec-

tion of the discontinuities and the specification of new

initial conditions to apply just after the discontinuities oc-

cur. It is planned that the first release of SystemC-AMS

will provide a limited support for initial conditions and

won't support discontinuities.

Continuous-time MoCs actually include several kinds

of analyses. Some of them are called static as they do not

require any input stimulus, others are called dynamic as

they compute the response of the system when input

stimulus are applied. Static analyses include the compu-

tation of the DC operating point, or quiescent state, trans-

fer functions of the system, and small-signal linear

frequency-domain analysis (including noise analysis).

Dynamic analyses include the time-domain (transient)

and large-signal nonlinear frequency-domain analyses.

SystemC-AMS will naturally support time-domain anal-

ysis, first as it is one of the most used kind of analysis for

continuous-time systems, and second as it may synchro-

nize well with discrete-time MoCs (this is discussed be-

low). SystemC-AMS will also have to support at least

small-signal linear frequency-domain analysis, as the fre-

quency-domain characteristics of a system is also impor-

tant, particularly for signal processing applications. This

should not require additional language element as the fre-

quency-domain model can be derived from the time-do-

main description (1) or (2).

F ẋ x y t, , ,( ) 0=

ẋ

ẋ F x u t, ,( )=

ẋ
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SystemC-AMS must support the description and
the simulation of continuous-time systems as

signal-flow and conservative-law models.

There are two ways to model a continuous-time sys-

tem, namely the conservative-law model and the signal-

flow model. Conservative-law models define the behav-

ior as close as possible to the physical behavior of the

modeled system. Physical quantities are abstracted as so-

called across and through quantities that respectively

represent an effort and a flow. The behavior is then de-

scribed as relations between across and through quanti-

ties. For example, for electrical circuits, across quantities

are voltages, through quantities are currents, and conser-

vative laws are Kirchhoff's laws. The formulation is quite

generic as it can be applied to the model of any kind of

physical systems, e.g. mechanical, thermal, optical, etc.

systems.

Signal-flow models define the behavior of continu-

ous-time systems as mathematical relations between

quantities that represent real-value functions of an inde-

pendent variable, usually the time. The underlying prin-

ciple of signal-flow modeling is a directed graph. Each

edge represents a quantity and each vertex represents a

relation (usually an assignment). Signal-flow models

have long been used in many areas of engineering, from

the theory of linear networks to automatic control, signal

processing, and data communication. As it provides an

appropriate level of abstraction for system design with re-

gard to modeling power and simulation efficiency, sig-

nal-flow modeling is the best candidate to be supported

by SystemC-AMS. As we'll see later, it also provides a

natural interface to the world of discrete time MoCs.

Supporting conservative-law modeling is required as

well to support multi-domain systems. Conservative-law

models interface themselves less directly with discrete-

time models as signal-flow models. This is however still

feasible, for example either by embedding conservative-

law models into signal-flow models [14], or by providing

the appropriate interface models (mixed-signal or mixed-

domain interfaces).

It is planned to only support signal-flow modeling in

the first release of SystemC-AMS.

SystemC-AMS must provide a, possibly generic,
way to handle interactions between MoCs.

SystemC 2.0 provides a very flexible way to model

the communication of systems by specifying a model for

communication and synchronization in a channel and

providing an interface for the channel, which can be used

independently from a specific realization of that channel.

This is generic enough to describe systems using various

MoCs, including both discrete-time and continuous-time

MoCs.

Following the layered approach advocated in Sys-

temC, it is planned that SystemC-AMS will eventually

support several specialized continuous-time MoCs and

their associated solvers, e.g. a solver for linear DAE/

ODE systems, a solver for static DC/AC/noise analysis, a

solver for nonlinear DAE systems, a solver optimized for

modeling and simulating electrical power systems or me-

chanical systems.

In all generality, SystemC-AMS has to address the in-

teractions both between continuous-time MoCs and be-

tween continuous-time and discrete-time MoCs. On the

one hand, interactions between continuous-time MoCs,

such as the coupling between a static DC/AC/noise solver

and a dynamic linear DAE solver, may be non existent as

each continuous-time solver may implement all required

numerical methods. An example is a linear DAE solver

that can compute the DC operating point of the system of

equations.

On the other hand, interactions between continuous-

time and discrete-time MoCs has to be formally defined.

Here comes the concept of a dedicated manager, let us

call it the synchronization layer, in the SystemC-AMS

framework. An example of a formal definition of the syn-

chronization between an event-driven solver and a con-

tinuous-time solver is given in the definition of the

VHDL-AMS hardware description language [19]. An-

other example of more general mixed discrete-time/con-

tinuous-time synchronization is implemented in the

Ptolemy II environment [16].

For the first release of SystemC-AMS, it is planned to

support synchronization between the synchronous data-

flow (SDF) MoC and the CT MoC implemented as a lin-

ear ODE solver for signal-flow models. These are the

MoCs that can be interfaced in the most natural and easy

way. SDF models are dataflow models in which each ver-

tex consumes and produces a fixed number of tokens per

activation. They have the nice property that a finite static

scheduling can always be found. Linear ODE systems of

equations can be solved using a fixed integration time

step that can be synchronized with the rate at which sam-

ples are handled by the SDF model.

Using constant time steps is appropriate for signal

processing systems, most of which being oversampled

systems. The simulation of control systems, however,

usually requires solving stiff nonlinear systems of equa-

tions. This will require to also support nonlinear DAE

solvers and variable integration time steps in SystemC-

AMS. Ultimately, the synchronization layer will be for-

mally defined to allow supporting more mixed discrete-

time/continuous-time synchronization schemes whenev-

er possible or making sense.

It is important to note that the synchronization also re-

quires the formal definition of a consistent initial (quies-

cent) state for the whole mixed-signal system, otherwise
391



the simulation of the continuous part of the model may ei-

ther fail or be inaccurate at best.

SystemC-AMS must provide appropriate views
(or description layers) for the description of

continuous-time models.

The interface layer provides the solver with the sys-

tem of equations to solve. This system of equations can

be, for example, generated from a network using the

Modified Nodal Analysis method or from a behavioral

representation like a transfer function or state-space de-

scription. The same interface can be useful for different

solvers (e.g. linear /nonlinear DAEs). The realization

must however take into account that the mapping to each

solver layer is different. At least the following interfaces

should supported: a netlist interface that should be com-

mon to all underlying continuous-time MoCs, and an

equation interface that should allow a user to formulate

behavioral models or functional specifications in a more

natural way as a set of DAEs.

SystemC-AMS must support the coupling with
existing continuous-time simulators.

SystemC-AMS will be essentially, as any other Sys-

temC extension over the core language, a library of C++

classes and methods that allow designers to develop sys-

tem-level executable specifications of mixed-signal (an-

alog-digital) and mixed-domains (e.g. electro-

mechanical) designs. It will be by no means designed to

replace existing circuit-level or system-level continuous-

time simulators/solvers. Rather, it will provide an open

architecture in which existing, mature, simulators or

solvers may be plugged in and coupled with discrete-time

MoCs.

4. Seed Works

A number of research works already took advantage

of the programming capabilities offered by SystemC to

develop own analog extensions and to get a mixed-signal

simulation framework “for free”. All the works presented

here have developed their own specialized C++ classes

and methods as well as their own libraries of modules.

In [2], Bonnerud et al. present such a mixed-signal

simulation framework with an application to the design

of pipelined A/D converters. The approach proves to be

useful to model a circuit-level technique, the digital noise

cancellation technique, to allow an efficient exploration

of pipelined architectures at a more abstract level, while

achieving comparable accuracy to MATLAB. The mod-

ule library includes functional models of relatively com-

plex mixed-signal elements (e.g. flash ADC, switched

capacitor DAC, or operational amplifier).

In [6], Einwich et al. discuss the synchronization be-

tween synchronous dataflow and linear continuous-time

MoCs using a fixed time step. The module library in-

cludes primitive electrical elements (R, L, C, sources)

and transfer functions. The framework also allows the

simulation of mixed-signal system in the frequency do-

main, provided frequency-domain models are added to

the discrete-time components in the system.

In [8], Grimm et al. present a framework for simulat-

ing power electronic components. This is an example of

a dedicated framework as it provides for an efficient sim-

ulation of a specific family of power circuits, namely

power drivers with capacitive or inductive loads. The

coupling with the discrete-time world remains simple and

efficient thanks to the limited number of supported power

circuit architectures. The module library includes primi-

tive electrical elements (R, L, C, sources, transistors).

In [9], Grimm et al. go a step further and present a

top-down modeling and simulation methodology based

on a refinement process. The issue here is not the module

library per se, but the synchronization mechanism be-

tween synchronous dataflow and continuous-time mod-

els at different levels of abstraction, from high-level

mathematical models to more physical, pin-accurate,

models. The refinement process takes advantage of exist-

ing object-oriented features of SystemC.

Last, but certainly not least, the work on the

Ptolemy II framework [16], although not supporting Sys-

temC, deserves a special attention. The way discrete-time

and continuous-time MoCs and their relative synchroni-

zation mechanisms are implemented in this environment

can provide useful insights on how developing AMS ex-

tensions to SystemC.

5. Conclusions and Future Work

This paper described the context in which the analog

and mixed-signal extensions to SystemC, called Sys-

temC-AMS, will be developed. A number of design ob-

jectives have been defined from requirements related to

different application domains.

As the application domains of AMS extensions are

pretty diverse in their requirements, it is contemplated

that the development will go over three phases, each

phase adding new capabilities:

1. Support of signal processing dominated applications.

This includes:

• The support of linear continuous-time MoCs with

behaviors expressed at the signal-flow level as a se-

quence of assignments.

• Time-domain simulation.

• Mixed-signal synchronization will be provided with

the synchronous dataflow MoC using fixed time
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steps. The coupling between discrete-time and con-

tinous-time MoCs is expected to be “weak”, e.g.

through control or status signals only.

• A library of primitive elements, e.g. R, L, C, sourc-

es, and special functions, e.g. transfer functions.

2. Support of RF/wireless applications. This includes:

• The support of non linear DAEs and their simula-

tion using variable time steps.

• The formulation of implicit equations, e.g. true si-

multaneous statements.

• Frequency-domain simulation.

• An enriched mixed-signal library with more com-

plex functional (signal-flow) models, e.g. amplifi-

ers, converters.

3. Support of automotive applications. This includes:

• Specialized continuous-time MoCs, e.g. for power

electronics or mechanical systems.

• Support of conservative-law models.

• Enrichment of the mixed-signal library with conser-

vative-law mixed-domain models.

• Definition of a generic synchronization mechanism

between discrete-time and continuous-time MoCs,

including software MoCs.

To achieve these goals, a proposal [7] to form an

OSCI Working Group to develop SystemC-AMS has

been submitted recently (July 2002) to the OSCI Board of

Directors.
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