Refinement of Mixed-Signal Systems with SystemC

Ch. Grimm, Ch. Meise, W. Heupke, K. Waldschmidt
University Frankfurt, Professur Technische Informatik
Robert-Mayer-Strasse 11-15; 60054 Frankfurt, Germany
grimm@ti.informatik.uni-frankfurt.de

Abstract

This paper gives an overview of a design methodology
specific extension library for SystemC. The supported de-
sign methodology successively refines an executable specifi-
cation to a concrete mixed-signal architecture. A first proto-
type, the ASC library, has been implemented and evaluated.

1. Introduction

Extensions for the modeling and simulation of analog
and mixed-signal systems are discussed in the “SystemC-
AMS Working Group” ([1]). These shall provide an open
platform for behavioral modeling and executable specifica-
tion of signal processing systems and the coupling of differ-
ent analog simulators. In this paper, we describe the refine-
ment of mixed-signal systems using a very first prototype
for SystemC-AMS (ASC-library).

The classical top-down design flow, using for example
VHDL-AMS starts with an executable specification in the
form of block diagrams. Within the design process, ideal-
ized blocks are replaced by more realistic models, which
usually introduce different interfaces: Abstract signals are
replaced by analog signals or bit vectors, and ports are
added that control the execution.

The object oriented modeling enabled by C++ allows us
to add features to the executable specification, refining it
sucessively by small steps to a detailed model. This refine-
ment process preserves the compatibility of the interfaces
used for modeling communication on different levels of ab-
straction. This compatibility directly supports mixed-level
simulation and re-use of models.

2. Refinement of Mixed-Signal Systems

We distinguish three levels of refinement: The design
starts with an executable specification. The executable

1530-1591/03 $17.00 & 2003 IEEE

specification is a block diagram with continuous-time se-
mantics and directed signal flow between the blocks mod-
eled using C++. The behavior of each block is specified
by dynamic linear functions (transfer functions that specify
filters or controllers) and algebraic nonlinear functions.

By the refinement of computation, the executable specifi-
cation is augmented by methods and parameters, that spec-
ify how the intended behavior is computed efficiently and
with sufficient accuracy. For an analog implementation,
no further refinement is required — the realization is just a
physical system whose behavior is “analog” to the equa-
tions. For a digital implementation (hardware or software),
we determine appropriate sample rates and bit-widths. Fur-
thermore, converters (a/d, d/a, sample-rate converters (src))
must be added. We call the resulting model a computation-
accurate model.

In a second step, communication and synchronization
are bound to concrete physical signals. The basic idea
of this refinement is already known from SystemC design
methodology: Adapter classes translate the abstract inter-
face to a concrete, pin- and cycle accurate interface. We call
the resulting model a pin-accurate model. This model is the
starting point for circuit-level design (analog modules) or
Hw/Sw Codesign (discrete modules).

Note, that the structuring in the above mentioned design
steps is just for illustration — the refinement is done by small
steps, that are validated separately and that can be done in
arbitrary order or in parallel by different designers.

3. The ASC library

The ASC library provides an “analog” or signal process-
ing process type. The execution of analog processes is not
controlled by the discrete event kernel. The execution of
such processes is controlled by a coordinator interface. Via
this interface, a coordinator can call the signal processing
C++ methods via remote method invocation. As a very sim-
ple example, we can model an analog integrator by the fol-
lowing C++ method in a module:

voi d conpute_integ() {

state += x*dt.to_seconds();
y = state;

}
This method is declared as an analog process:
ASC_SI G_PROC(conput e_i nteg);

More complex analog processes could be external ana-
log simulators, such as Saber or Spice, for example. In or-
der to be able to simulate the analog process, signal pro-
cessing methods are bound to coordinators, that control the
execution of clusters of analog processes. A coordinator
is an object, which realizes the abstract coordinator inter-
face (asc_coordi nator . f). The binding of analog
processes to coordinators can be made either “fixed” (for
distribution, re-use), or can be left open.

“Analog” processes communicate via “analog” ports
and signals. Analog signals realize the interface used
in discrete-event simulation (sc _si gnal _i nout _i f)and
an interface for the synchronization of analog processes
(ascsi gnal . f). By this multiple inheritance, the sig-
nal class can as well be read or written by discrete event pro-
cess, without the need for an explicit converter (as needed,
for example in VHDL-AMS between Quantities and Sig-
nals). This allows us to connect as well digital modules to
an abstract “analog” signal, and to refine the abstract sig-
nal to an analog signal, an A/D converter and a digital sig-
nal. Analog ports map the abstract interface functions to
the functions of an instanciated signal. Doing that, the ports
decide, which synchronization mechanism is applied: Cou-
pling of analog processes among each other or coupling of
analog and discrete event processes.

4. Design of a PWM controller

The ASC library and the refinement have been evaluated
in a case study by designing a PWM controller. This con-
troller controls a continuous voltage on a load by switching
a transistor either on or off. The load in this example is a
resistor in parallel with a capacitor. The system computes
the difference between the actual voltage U (C') and a pro-
grammed voltage Uprog. The difference is input for a Pl
controller. A pulse former creates pulses, whose width is
proportional with the output of the PI controller.

An executable specification was created using the pre-
defined modules asc_s_pi _control | er specifying the
Pl controller and asc_s_parti al modeling the CMOS
switches with the load. The behavior of the pulse former is
specified by a discrete SystemC thread:

voi d pul se_generator() {
do {
on_off = 1; wait(sc_time(ctrl, SC.US));
on_off = 0; wait(sc_time(255-ctrl, SC US));
} while (true);
}

We started simulation with small step widths, which
were reduced subsequently to 255 ps. This reduction was
only possible with further refinements. First, we added an
A/D converter model to the signal U(C'). Second, we re-
fined the schedule of the computations: Instead of unneces-
sary high oversampling, we defined a precise cycle: First,
the power switches are enabled, after a certain “on-time”,
the converter is requested to sample, after the conversion
time, and then the PI controller computes one cycle. These
refinements were done in small steps, that were validated
separately. We started by reducing the step width of the
coordinator cl k to zero and by triggering the execution ex-
plicitely.

Later, we refined this method to a controller, which uses
enable and clock signals as shown in figure 1 to control the
execution of the Pl controller, the converter, and to generate
the pulses. Note, that the refined controller also includes a
counter, which reduces simulation performance by magni-
tudes in exchange for modeling communication pin accu-
rate.

‘—'{ Bus interface, register map, etc. ‘
e

Pulse | |

ctrl generator on_of f =: gvl\atc();ﬁe 3
Ctrl. logic Tl !

! |

3

Pl | T2 C |
controller ue) I !

,,,,,,,,,,,,,,,,,,

Uprog

Figure 1. Refined PWM model.

Figure 1 gives an overview of the refined model, that was
the starting point for the design of the single modules on RT-
level (the PI controller using Coware synthesis tool). Note,
that the system shown in figure 1 still provides all signals
and abstract communication interfaces that were used in the
executable specification — this allows us to configure less
accurate but “faster” models: In order to get a C++ model,
that can be used in software development, only cycle precise
communication on the bus interface is required. Therefore,
we can easily replace the clock cycle precise controller and
internal models by a more abstract and faster “computation-
precise” model, which uses the coordinator interface instead
of clocks and enable signals.

References

[1] A. Vachoux, C. Grimm, and K. Einwich. SystemC-AMS Re-
quirements, Design Objectives and Rationale. In Design and
Test in Europe 2003 (DATE ' 03), Paris, France, 2003.

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

