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Abstract

Systems-on-Chip (SoCs) are heterogeneous by nature
as they may integrate digital, analog, RF hardware as well
as software components or non electrical parts such as sen-
sors or actuators. The increasing level of complexity for de-
signing SoCs in a reasonable amount of time and resources
asks, among other capabilities, for powerful modeling and
simulation means. SystemC is emerging as a de facto stan-
dard for digital system design, but is still lacking a standard
support of continuous-time and mixed discrete-event/con-
tinuous-time systems. This paper presents the first elements
of extensions to SystemC, called SystemC-AMS, that are
proposed to fill the gap.

1. Introduction

A system on chip (SOC) is defined as a complex inte-
grated circuit that integrates the major functional elements
of a complete end-product into a single chip or chipset [1].
One big challenge in today's SOC designs is their heteroge-
neity. They encompass digital, analog and mixed-signal
hardware and software components and even non electrical
parts such as sensors and actuators (MOEMS: micro opto-
electronic mechanical systems). The design and the verifi-
cation of such systems therefore require powerful modeling
and simulation means to address all aspects consistently
and efficiently.

SystemC is emerging as a de facto standard for digital
system design. It provides an open framework for describ-
ing the structure and the behavior of discrete-event hard-
ware systems, possibly also including software [2][3].
SystemC however still lacks a standard support for analog
and mixed-signal systems, or, more generally, for the mod-
elling and the simulation of continuous-time systems and so
of mixed continuous-time/discrete-event systems. To fill
this gap, a SystemC-AMS Study Group has been formed in
2002 with the mission to develop the so-called analog and
mixed-signal (AMS) extensions to SystemC, hence the
name SystemC-AMS. The work of the Study Group is driv-
en by a number of objectives [4] and is building on several
preliminary works [5][6].

The goal of this paper is to present an overview of the
first version of the SystemC-AMS functional specification
and to show how they integrate with the existing SystemC
2.0 implementation. Section 2 gives a brief overview of
SystemC 2.0 and highlights the features that are exploited
and extended in SystemC-AMS. Section 3 presents the con-
text in which SystemC-AMS is being developed. Section 4
summarizes a first attempt to develop a consistent set of
functional specifications for SystemC-AMS. Section 5
gives a couple of illustrative, but non definitive, examples.
Section 6 brings some conclusions and highlights future
work.

2. SystemC 2.0 overview

SystemC is a set of C++ classes and methods that pro-
vides a powerful means to describe the structure and the be-
havior of hardware/software systems from abstract
specifications to register transfer level (RTL) models. A
simulation semantics is defined by a scheduler that supports
several possible execution models or models of computa-
tion (MoC) such as static and dynamic multi-rate dataflow
and discrete event. The latest release 2.0 of SystemC offers
constructs for generalizing the modeling of communication
and synchronization as well as the support of transaction-
level modeling and system-level verification [7].

In SystemC, modules encapsulate concurrent processes
and have ports to communicate with the outside world. Pro-
cesses encapsulate sequential behavior, but may execute
asynchronously (concurrently) between each others.

Each port is associated with an interface which defines
the possible abstract operations (e.g., read or write). A
channel implements an interface by defining how the oper-
ations are performed. There might be several different
channels for the same interface, hence supporting one form
of refinement from abstract communication such as FIFO
queues to complex protocols with embedded processes.

Primitive channels belong to a special class of channels
that supports the request-update communication mecha-
nism at the heart of discrete event simulation. This mecha-
nism basically allows for simulating concurrency and
guarantees that the result of simulation does not depend on
the order in which processes are executed.
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SystemC’s object-oriented approach provides the most
essential features to support system-level design. Overload-
ing, specialization and refinement allow for progressively
refining an abstract specification to a detailed model that
can be used as input for (behavioral) synthesis or software
compilation, while polymorphism allows for hiding the re-
finement process behind unique interfaces.

The SystemC class hierarchy is rooted to the class
sc_object that provides methods for the basic management
of object attributes such as name and kind. Figure 1 gives a
simplified view of the SystemC class organization in UML
notation. The class sc_module defines methods to manage
concurrent processes and provides a context to support
structural composition through ports. The class
sc_prim_channel implements methods that realize the basic
request-update simulation mechanism of the discrete-event
MoC. A user-defined module has typically ports that be-
long to a particular interface. The abstract class sc_port de-
fines the binding of the port to the interface. There are
several possible interfaces available for the discrete event
MoC that are represented in Figure 1 by the class
sc_signal_xx_if<T> (it is actually not existing under this
name; xx must be replaced by in, inout or out). This class de-
clares the virtual methods read and write to operate on the
associated channel. Finally, the class sc_signal realizes the
actual channel and implements the read and write methods.
This channel is typically used to model digital systems at
the Register Transfer Level (RTL) or at the gate level.

The primitive channel class provides an abstract frame-
work for discrete event MoC. SystemC also provides other
specialized primitive channels than sc_signal for that MoC
that support other kind of communication, namely intra-
module communication, semaphores or bounded FIFO
queues. All these different communication mechanisms can
be bound to the same module ports since all of them imple-
ment the same interface.

3. SystemC-AMS objectives

The main objective of SystemC-AMS is to provide an
efficient means for modelling and simulation of heteroge-
neous systems. The support of continuous-time systems
shall be seamlessly integrated in the existing SystemC
framework. To that end, the development of the AMS ex-
tensions is planned in three phases [4]:
• Phase 1 is currently ongoing and is addressing signal pro-

cessing dominated applications. This is done by provid-
ing a support for linear dynamic continuous-time
modelling, predefined linear operators (transfer func-
tions, state-space equation formulation), linear network
elements, and a synchronization between continuous-
time and discrete-event model parts using a static data-
flow scheduler with fixed time steps.

• Phase 2 will address RF/wireless applications by provid-
ing a support of nonlinear differential algebraic equa-
tions (DAEs) simulation using variable time steps and
frequency-domain simulation.

• Phase 3 will address automotive applications by provid-
ing a support of conservative-law systems and a generic
synchronization mechanism between continuous-time
and discrete-time model parts.

4. Functional specifications

4.1. Layered approach

The AMS extensions to SystemC are being defined us-
ing a layered approach [8] (Fig. 2). The base layer is the ex-
isting SystemC 2.0 kernel. On top of the base layer, two sets
of layers are defined: on the one hand there is the set of the
existing SystemC 2.0 layers, e.g. discrete-event channels,
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Figure 1. Simplified SystemC class organisation in UML notation.
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and on the other hand there is the new set of layers related
to AMS extensions, namely, from the top:
• The user view layer provides different descriptive meth-

ods to write the executable continuous-time models,
namely: procedural behavior, equations, transfer func-
tions, state-space formulation, netlists of primitives.

• The solver layer provides different implementations of
solvers that are required to simulate specific AMS de-
scriptions. The solvers are related to the available views.
For example, a view consisting of a netlist of electrical
RLC primitives will need a linear solver using an equa-
tion formulation method such as the Modified Nodal
Analysis method, while a view consisting of equations
will need a more general nonlinear DAE solver. Special-
ized solvers, e.g. for the simulation of power networks or
mechanical parts, are also considered.

• The synchronization layer implements a mechanism to
organize the simulation of a SystemC-AMS model that
may include different continuous-time views and dis-
crete-event parts. It also defines a generic interface in
which continuous-time solvers can be plugged.

4.2. Phase 1 semantic model

Phase 1 of the AMS extensions considers continuous-
time descriptions to be embedded in dataflow clusters. A
dataflow cluster may include any number of dataflow
blocks whose execution order is statically scheduled. Each
dataflow cluster is embedded in a separate discrete-event
process called a cluster process that is managed by a coor-
dinator (Fig. 3).

A dataflow cluster may be then selected and run at a
constant time step during the AMS simulation. The time
step is defined by the sampling rate of the signals in the
cluster. It is assumed that the sampling rate of signals in
dataflow clusters is much higher than twice the maximum
frequency of the discrete-event signals in order to minimize
quantization and interpolation effects. This assumption is
realistic as most of signal processing applications use over-
sampling.

The embedding of dataflow clusters in discrete-event
processes is done at elaboration time and is therefore not

explicitly expressed in the text of the model. SystemC does
not formally has an elaboration phase as VHDL has, al-
though it is considered that elaboration occurs when the
SystemC library binds each port, and its related interface, to
a designated channel.

A dataflow block encapsulates some continuous-time
behavior in the form of a new kind of module called an AMS
module. The synchronization between different continu-
ous-time solvers and the event-driven SystemC kernel is
done using the coordinator and generalized signals or gen-
eralized channels. The coordinator has the task of register-
ing continuous-time modules and signals, and of defining
the methods to handle the synchronization (e.g. time step
selection).

Generalized signals provide a generic mechanism to de-
fine the coupling between continuous-time and event-driv-
en modules. More importantly, they allow true object-
oriented model refinement from abstract specifications to
detailed implementations.

4.3. The AMS module

An AMS module is described with the macro
SCA_MODULE as follows (the sca_ prefix denotes an AMS
extension to distinguish from regular SystemC 2.0 item
names which start with the sc_ prefix):

SCA_MODULE(module-name)
// ports, internal data, member functions
SCA_CTOR(module-name) {

// constructor for SDF synchronization
SCA_SDF_ATTR(attribute-function)
SCA_SDF_INIT(initialization-function)
SCA_SDF_SIGPROC(signal-processing-function)
SCA_SDF_POST(post-processing-function)

}
};

The SCA_MODULE macro is actually a short-hand for
the definition of the class sca_module as:

class sca_module : public sc_module { ... };

View 1 View 2 View N

Solver 1 Solver N

AMS synchronization

SystemC kernel

SystemC 
layers

User view layer

Synchronization 
layer

Solver layer

SystemC layer

Figure 2. SystemC-AMS layered structure.
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Figure 3. Continuous-time blocks 
embedded in a dataflow cluster.
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The module may register at most four member func-
tions: an attribute function, an initialization function, a sig-
nal processing function and a post-processing function.
Only the signal processing function is required. The other
functions are optional. As a consequence, no discrete-event
processes are allowed in an AMS module.

The attribute function defines the values of useful at-
tributes for the static dataflow simulation, namely the time
step, the delay at the output ports and, in a future release,
the rate of the multi-rate simulation. The initialization func-
tion is called once after elaboration is done and before sim-
ulation starts. The signal processing function defines the
continuous-time behavior of the module in the form of pro-
cedural assignments. The post-processing function is called
once and before simulation finishes.

The hierarchical composition of AMS modules is possi-
ble using regular SystemC modules (SC_MODULE). As a
consequence, the macro SCA_MODULE defines continu-
ous-time primitives.

4.4. Generalized signals

The modules in dataflow clusters communicate via di-
rected signals. Signals define the model of communication
but do not contribute directly to the system behavior. This
allows for formally separating function from communica-
tion. Signals can also be used to provide appropriate cou-
plings between different models of computation. In our
case, a new class of signals must provide an interface be-
tween discrete-event and dataflow modules.

Figure 4 gives a simplified UML description of the new
classes. The class sca_signal defines a generalized signal
that implements methods for accessing both discrete-event
signals (through methods read() and write()) and continu-
ous-time signals (through methods read_a() and write_a()).

This class also inherits from the class sca_sdf_signal which
implements the static dataflow communication scheme.

As far single rate dataflow MoC is concerned, simple
buffers to store continuous-time signal values are enough.
It would be however possible to have more sophisticated
dataflow communication mechanisms, e.g. using FIFOs or
supporting multi-rate dataflow systems.

4.5. AMS ports

AMS modules may have two kinds of ports. One kind is
defined by a new abstract class called sca_port, that sup-
ports continuous-time dataflow signals. Specialized (data-
flow) signal ports are then derived form the abstract class,
namely sca_in, sca_inout and sca_out and defined as (class
sca_out is identical to sca_inout):

template <class T>
class sca_in : public sca_port<sca_sdf_in_if<T> > ...;

template <class T>
class sca_inout : public sca_port<sca_sdf_inout_if<T> > ...;

Another kind of abstract class, called sca_d_port, sup-
ports the use of a regular SystemC signals as control signals
for the module. Specialized classes sca_d_in and
sca_d_inout are defined as (again, class sca_d_out  is iden-
tical to sca_d_inout):

template <class T>
class sca_d_in : public sca_port<sca_signal_in_if<T> > ...;

template <class T> class sca_d_inout :
public sca_port<sca_signal_inout_if<T> > ...;

It should be noted that no regular SystemC ports are al-
lowed in an AMS module as this would break the discrete-
event/continuous-time synchronization.

4.6. Coordinator

The coordinator is responsible for the following tasks.
During elaboration, it has to built the dataflow clusters from
the structural organization of the AMS modules. As there
should be one process per cluster, the coordinator has to in-
stantiate a number of cluster processes. It also has to com-
pute, if not defined, the time step for each module in the
dataflow clusters. Single-rate dataflow simulation uses the
same time step for all modules in a cluster. Finally, it has to
determine a static scheduling of the modules in the dataflow
clusters. Cyclic dependencies in a cluster must be broken
by inserting a time step delay.

During simulation, the coordinator executes all signal
processing functions in the order defined by the static
scheduling and notifies the SystemC kernel to reactivate the
computation at the next time step.

#request_update()
#update()

sc_prim_channel

+read()
+write()

«interface»
sc_signal_xx_if<T>

+read()
+write()

sc_signal<T>

+read_a()
+write_a()

«interface»
sca_sdf_xx_if<T>

sca_channel

+read()
+read_a()
+write()
+write_a()

sca_signal<T>

sca_sdf_signal

Figure 4. Simplified UML diagram of 
generalized signals and interfaces.
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4.7. Mixed-signal simulation cycle

The SystemC 2.0 simulation cycle is proposed to be ex-
tended as follows to support the execution of the dataflow
clusters:
1. Initialization. The initialization methods registered in

AMS module are executed. This includes the definition
of initial conditions.

2. Evaluation. Cluster processes are only executed at delta
0 in the order defined by the static scheduling (delta cy-
cles provide a standard way to emulate concurrency
when simulating discrete-event models.) The cluster
processes will be reactivated, always at delta 0, at every
time step defined for the cluster.

3. Repeat step 2 while there are still processes ready to run,
else go to step 4.

4. Update. Signals are updated with their new values.
5. Go to step 2 if the signal updates generated events with

zero delay (delta cycle), else go to step 6.
6. Finish simulation if there are no more pending events,

else go to step 7.
7. Advance to the time of the earliest pending event.
8. Determine processes that are ready to run and go to step

2.
It should be noted that the proposed changes to the stan-

dard SystemC 2.0 simulation cycle are minimal as far as
only the support of signal processing dominated applica-
tions is concerned. The support of a more general simulator
coupling mechanism might require more substantial modi-
fications of the simulation cycle, possibly affecting the ex-
isting SystemC kernel.

5. Examples

The first example shows how to embed the continuous-
time behavior of a simple second-order lowpass filter in a
static dataflow module. The transfer function of such a fil-
ter is given by Equation 1:

(1)

The code in the right column shows one possible de-
scription of the lowpass filter module in SystemC-AMS.
The transfer function is modeled using the predefined func-
tion sca_ltf which is assumed to be referenced in the include
file sca_basic_lib.h. It is planned to enrich the so-called ba-
sic library with other functions such as state-space equa-
tions, sources, sinks, converters and arithmetic modules.
The registered initialization function init computes the nu-
merator and denominator coefficients while the registered

signal processing function compute does the computation
through the function sca_ltf. Note the selection of the actual
gain with the control signal gain6db.

The second example shows how linear electrical net-
works may be described. The support of linear electrical el-
ements has not been discussed in this paper since it is not
yet completely defined. However, as it is planned to be in-
cluded in phase 1 it is good to get a first insight into how it
could be done in SystemC-AMS. The use of linear electri-
cal network descriptions at system level might seems a bit
contradictory and overwhelming. They are usually used to
specify blocks as simplified macromodels which may in-
clude parameters to allow design space exploration.

Figure 5 shows a simple linear network whose actual
behavior depends on a control switch signal called hook.
The following code shows one possible description of the
network module in SystemC-AMS. It is assumed that the
behavior of electrical primitives are defined in classes ref-
erenced in the include file sca_prim_lib.h. The detailed im-
plementations for theses classes are not given here, but they
essentially define the contribution of each element to a sys-
tem matrix to be solved by an external solver [5]. The ex-
ample also shows the use of a new kind of connection
points called sca_node and one specific node called

H p( ) H0
ωp

2

p2 ωp
Qp
-------p ωp

2+ +

------------------------------------⋅=

#include "sca_basic_lib.h"  // for accessing sca_ltf function
SCA_MODULE(lp_sdf) {

// sdf ports
sca_in<double>    LPIN;    // filter input
sca_out<double>   LPOUT;   // filter output
// control port
sca_d_in<bool>    GAIN6DB;

// if false, gain = 1.0, else gain = 2.0
// parameters
const double FC, QF;  // cut-off frequency, quality factor
sc_vector<double> N, D;

// LTF numerator and denominator
// sdf methods
void init(){

double wp = 2.0*M_PI*FC;
N[0] = wp*wp;
D[0] = wp*wp;
D[1] = wp/QF;
D[2] = 1.0;

 }
void compute(){

double gain = 1.0;
if (GAIN6DB.read()) gain = 2.0;
LPOUT.write_a(gain*sca_ltf(N, D, LPIN.read_a()));

}
// constructor
SCA_CTOR(lp_sdf) {

SCA_SDF_INIT(init);
SCA_SDF_SIGPROC(compute);

}
};
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sca_reference. The full definitions for these new classes
were not yet available by the time this paper was written.

6. Conclusions

The paper presented first elements of phase 1 of the ex-
tensions of the SystemC framework to support analog and
mixed-signal systems, or more generally continuous-time
and mixed discrete-event/continuous-time models of com-
putations. The approach used in phase 1 is to embed contin-
uous-time descriptions into discrete-event modules as a
cluster of dataflow components. The simulation of dataflow

components is done using a single-rate static scheduling.
Although not explicitly shown in the paper, the definition
of generalized signals and channels will support true ob-
ject-oriented model refinement from abstract specifications
to detailed implementations.

The concept of a global coordinator which manages the
simulation of the continuous-time parts and the synchroni-
zation with the discrete-event systemC kernel is a first step
towards a more generalized mechanism that will support
the coupling of different kinds of solvers.

However, a lot of work is still to be done to complete
Phase 1. One issue is the support of small-signal AC mod-
eling and simulation, an important requirement for signal
processing applications. Another issue is the support of lin-
ear electrical primitives and of their corresponding solv-
er(s). Prototypes have already been developed for these
features, but it is now required to harmonize these works
into a common and consistent framework which has been
partially presented in this paper.
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#include "sca_prim_lib.h"  // for electrical primitives
SCA_MODULE(linear_net) {

// sdf ports
sca_in<double>    VTR;     // network input
sca_out<double>   ITR;     // network output
// control port
sca_d_in<bool>    HOOK;
// local nodes
sca_node n1, n2, n3, n4, n5, n6, n7;
sca_reference gnd;
// primitive instances
sca_r       *rp1, *rp2, *roff, *ron;
sca_c       *cp, *con;
sca_l       *lp;
sca_sw      *sw;
sca_i2sdf   *i2sdf;
// constructor
SCA_CTOR(linear_net) {

vbslic = new sca_vsdf("vbslic",w1,gnd,VTR);
rp1     = new sca_r("rp1",w4,w2,60.0);
rp2     = new sca_r("rp2",w2,w3,40.0);
cp       = new sca_c("cp",w2,gnd,1e-12);
lp        = new sca_l("lp",w3,w4,1e-3);
sw      = new sca_sw("sw",w4,w5,w6,HOOK);
roff     = new sca_r("roff",w5,gnd,600.0);
ron     = new sca_r("ron",w5,w7,1e3);
con     = new sca_c("con",w7,gnd,1e-6);
i2sdf   = new sca_i2sdf("i2sdf",w1,w4,ITR);

}
};

rp1 rp2

cp
vbslic

sw

con

ron
roff

lp

i2sdf

vtr

itr

hook

linear_net

Figure 5. Simple linear network.
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